Skip to main content
Log in

Multibit Upsets of Onboard Spacecraft Electronics from a Single Cosmic Radiation Particle

  • Engineering Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

An analysis of the impact of high-energy cosmic radiation protons on the onboard electronics of the spacecraft was performed. It has been shown that protons can cause nuclear reactions with the atomic nuclei of electronics material. Residual nuclei formed as a result of a nuclear reaction have sufficiently high energy to cross the sensitive areas of several bits of electronics, and the high ionizing ability of nuclear fragments makes it possible to generate an excess charge of carriers that exceeds the critical charge for upsets to occur simultaneously in several bits of an electronic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. A. I. Chumakov, Effect of Cosmic Radiation on Integrated Circuits (Radio i Svyaz’, Moscow, 2004) [in Russian].

    Google Scholar 

  2. K. I. Tapero, V. N. Ulimov, and A. M. Chlenov, Radiation Effects in Silicon Integrated Circuits for Space Applications (BINOM, Moscow, 2012) [in Russian].

    Google Scholar 

  3. P. E. Dodd, IEEE Trans. Nucl. Sci. 57, 1747 (2010). https://doi.org/10.1109/TNS.2010.2042613

    Article  ADS  Google Scholar 

  4. S. Bourdarie and M. Xapsos, IEEE Trans. Nucl. Sci. 55, 1810 (2008). https://doi.org/10.1109/TNS.2008.2001409

    Article  ADS  Google Scholar 

  5. M. Sajid, N. G. Chechenin, F. S. Torres, et al., Adv. Space Res. 56, 314 (2015). https://doi.org/10.1016/j.asr.2015.04.011.

    Article  ADS  Google Scholar 

  6. W. Heinrich, Rad. Eff. 34, 143 (1977). https://doi.org/10.1080/00337577708233140

    Article  ADS  Google Scholar 

  7. J. Barak, J. Levinson, A. Akkerman, et al., IEEE Trans. Nucl. Sci. 46, 1342 (1999). https://doi.org/10.1109/23.819092

    Article  ADS  Google Scholar 

  8. P. E. Dodd, IEEE Trans. Nucl. Sci. 43, 561 (1996). https://doi.org/10.1109/23.490901

    Article  ADS  Google Scholar 

  9. P. E. Dodd and F. W. Sexton, IEEE Trans. Nucl. Sci. 42, 1764 (1995). https://doi.org/10.1109/23.488777

    Article  ADS  Google Scholar 

  10. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods, Sect. B 268, 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  Google Scholar 

  11. N. G. Chechenin, N. V. Novikov, and A. A. Shirokova, Phys. At. Nucl. 86, 188 (2023). https://doi.org/10.1134/S1063778823020047

    Article  Google Scholar 

  12. D. K. Nichols, W. E. Price, and J. L. Andrews, IEEE Trans. Nucl. Sci. NS-29, 2081 (1982). https://doi.org/10.1109/TNS.1982.4336500

    Article  ADS  Google Scholar 

  13. W. L. Bendel and E. L. Petersen, IEEE Trans. Nucl. Sci. NS-30, 4481 (1983). https://doi.org/10.1109/TNS.1983.4333158

    Article  ADS  Google Scholar 

  14. Y. Shimano, T. Goka, S. Kuboyama, et al., IEEE Trans. Nucl. Sci. 36, 2344 (1989). https://doi.org/10.1109/23.45446

    Article  ADS  Google Scholar 

  15. T. V. Chuvilskaya, A. A. Shirokova, A. G. Kadmenskii, et al., Phys. At. Nucl. 71, 1293 (2008). https://doi.org/10.1134/S1063778808070247

    Article  Google Scholar 

  16. N. G. Chechenin, T. V. Chuvilskaya, A. A. Shirokova, et al., Phys. At. Nucl. 78, 890 (2015). https://doi.org/10.1134/S1063778814120060

    Article  Google Scholar 

  17. T. Bion and J. Bourrieau, IEEE Trans. Nucl. Sci. 36, 2281 (1989). https://doi.org/10.1109/23.45436

    Article  ADS  Google Scholar 

  18. K. M. Warren, R. A. Weller, M. H. Mendenhall, et al., IEEE Trans. Nucl. Sci. 52, 2125 (2005). https://doi.org/10.1109/TNS.2005.860677

    Article  ADS  Google Scholar 

  19. J. R. Schwank, M. R. Shaneyfelt, J. Baggio, et al., IEEE Trans. Nucl. Sci. 52, 2622 (2005). https://doi.org/10.1109/TNS.2005.860672

    Article  ADS  Google Scholar 

  20. R. A. Reed, R. A. Weller, R. D. Schrimpf, et al., IEEE Trans. Nucl. Sci. 53, 3356 (2005). https://doi.org/10.1109/TNS.2006.885950

    Article  ADS  Google Scholar 

  21. P. E. Dodd, J. R. Schwank, M. R. Shaneyfelt, et al., IEEE Trans. Nucl. Sci. 54, 2303 (2007). https://doi.org/10.1109/TNS.2007.909844

    Article  ADS  Google Scholar 

  22. M. Herman et al., EMPIRE-II nuclear reaction code. https://www-nds.iaea.org/empire218/.

  23. A. J. Koning, S. Hilaire, et al., TALYS-1.2: A Nuclear Reaction Program: User Manual (NRG, Netherlands, 2009).

    Google Scholar 

  24. A. D. Tipton, J. A. Pellish, J. M. Hutson, et al., IEEE Trans. Nucl. Sci. 55, 2880 (2008). https://doi.org/10.1109/TNS.2008.2006503

    Article  ADS  Google Scholar 

  25. M. Sajid, N. G. Chechenin, F. S. Torres, et al., Microelectron. Reliab. 78, 11 (2017). https://doi.org/10.1016/j.microrel.2017.07.084

    Article  Google Scholar 

  26. N. G. Chechenin and M. Sajid, J. Aeronaut. Aerosp. Eng. 6, 77 (2017).

    Google Scholar 

  27. V. S. Anashin, P. A. Chubunov, and S. A. Iakovlev, ‘‘SEE test results of 256k RAM with preliminary TID irradiation,’’ in Proceedings of 15th European Conference on Radiation and Its Effects on Components and Systems (RADECS) (2015), p. 378. https://doi.org/10.1109/RADECS.2015.7365662

Download references

Funding

The research was carried out within the framework of the scientific program of the National Center for Physics and Mathematics, direction no. 6 ‘‘Nuclear and Radiation Physics.’’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Chechenin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechenin, N.G., Novikov, N.V. & Shirokova, A.A. Multibit Upsets of Onboard Spacecraft Electronics from a Single Cosmic Radiation Particle. Moscow Univ. Phys. 79, 113–120 (2024). https://doi.org/10.3103/S0027134924700012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134924700012

Keywords:

Navigation