Skip to main content
Log in

A Virtual Mechanism of Ternary Nuclear Fission

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

It is shown that the experimental energy characteristics of long-range \(\alpha\)-particles, considered as third particles emitted in spontaneous ternary fission of nuclei induced by neutrons, indicates that ternary nuclear fission, along with the previously studied processes of double \(\beta\)-decay and two-proton decay of nuclei, belongs to the class of two-step virtual nuclear decays, in which states of intermediate nuclei that lie outside the mass surface of the decay occur. The ternary fission widths and energy distributions of \(\alpha\)-particles were calculated based on the concepts of the quantum fission theory and the proposed virtual mechanism of ternary fission taking into account the fact that the \(\alpha\)-particle is emitted from the neck of the fissile nucleus in its configuration preceding the rupture of the nucleus into fission fragments. An estimate of the radius of the fissile nucleus neck for spontaneous ternary fission of \({}^{250,252}\)Cf, \({}^{248}\)Cm nuclei, as well as for ternary fission of \({}^{233,235}\)U nuclei induced by neutrons, has been obtained from the comparison of these energy distributions with experimental \(\alpha\)- particle distributions; it is consistent with the values of similar radii from calculations of the evolution of the fissile nucleus shape based on the generalized droplet model of the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. S. G. Kadmenskii, L. V. Titova, and D. E. Lyubashevskii, Phys. At. Nucl. 83, 311 (2020).

    Google Scholar 

  2. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Pergamon, Oxford, 1982; Fizmatgiz, Moscow, 1959).

  3. V. I. Gol’danskii, Sov. Phys. JETP 12, 348 (1960).

    Google Scholar 

  4. S. G. Kadmenskii and Yu. V. Ivankov, Phys. At. Nucl. 77, 1019 (2014).

    Article  Google Scholar 

  5. S. G. Kadmenskii and Yu. V. Ivankov, Phys. At. Nucl. 77, 1532 (2014).

    Article  Google Scholar 

  6. S. G. Kadmenskii and A. O. Bulychev, Bull. Russ. Acad. Sci.: Phys. 79, 872 (2015).

    Article  Google Scholar 

  7. S. G. Kadmenskii and A. O. Bulychev, Bull. Russ. Acad. Sci.: Phys. 80, 921 (2016).

    Article  Google Scholar 

  8. L. A. Sliv, Zh. Eksp. Teor. Fiz. 20, 1141 (1950).

    Google Scholar 

  9. V. I. Tretyak, Double Beta Decay: History and Current Status (Inst. Nucl. Res., 2014).

  10. S. G. Kadmenskii, Yu. V. Ivankov, and D. E. Lyubashevskii, Phys. At. Nucl. 80, 903 (2017).

    Article  Google Scholar 

  11. M. Mutterer and J. P. Theobald, Dinuclear Decay Modes (IOP Publ., Bristol, 1996), Chap. 1.

    Google Scholar 

  12. M. Mutterer, Yu. N. Kopatch, P. Jesinger, et al., Nucl. Phys. A 738, 122 (2004).

    Article  ADS  Google Scholar 

  13. S. Vermote, C. Wagemans, O. Serot, et al., Nucl. Phys. A 837, 176 (2010).

    Article  ADS  Google Scholar 

  14. S. G. Kadmenskii, L. V. Titova, and P. V. Kostryukov, Bull. Russ. Acad. Sci.: Phys. 82, 1299 (2015).

    Article  Google Scholar 

  15. L. Nowicki, E. Piasecki, J. Sobolevsli, et al., Nucl. Phys. A 375, 187 (1982).

    Article  ADS  Google Scholar 

  16. I. Halpern, Ann. Rev. Nucl. Sci. 21, 245 (1971).

    Article  ADS  Google Scholar 

  17. P. Fong, Phys. Rev. C 3, 2025 (1971).

    Article  ADS  Google Scholar 

  18. G. V. Val’skii, Sov. J. Nucl. Phys. 24, 140 (1976).

    Google Scholar 

  19. V. A. Rubchenya, Sov. J. Nucl. Phys. 35, 334 (1982).

    Google Scholar 

  20. J. P. Lestone, Phys. Rev. C 70, 021601(R) (2004).

  21. A. Borh and B. Mottelson, Nuclear Structure (Benjamin, New York, 1977).

    Google Scholar 

  22. S. G. Kadmenskii, S. S. Kadmenskii, and D. E. Lyubashevskii, Phys. At. Nucl. 73, 1436 (2010).

    Article  Google Scholar 

  23. S. G. Kadmenskii and L. V. Rodionova, Phys. At. Nucl. 72, 1798 (2009).

    Google Scholar 

  24. V. M. Strutinskii, Sov. J. Nucl. Phys. 6, 447 (1967).

    Google Scholar 

  25. M. Brack et al., Rev. Mod. Phys. 40, 320 (1972).

    Article  ADS  Google Scholar 

  26. C. F. Tsang, Phys. Scr. A 10, 90 (1974).

    Article  ADS  Google Scholar 

  27. O. Tanimura and T. Fliessbach, Z. Phys. 328, 475 (1987).

    ADS  Google Scholar 

  28. A. L. Barabanov, Symmetries and Spin-Angle Correlations in Reactions and Decays (Fizmatlit, Moscow, 2012) [in Russian].

    Google Scholar 

  29. M. Ya. Borkovskiy, Yu. M. Gusev, Y. K. Zalite, et al., Preprint no. 1540 (PINP, 1989).

    Google Scholar 

  30. S. Vermote, C. Wagemans, O. Serot, et al., Nucl. Phys. A 806, 1 (2008).

    Article  ADS  Google Scholar 

  31. O. Serot, N. Carjan, and C. Wagemans, Eur. Phys. J. A 8, 187 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Titova.

Additional information

Translated by E. Baldina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titova, L.V. A Virtual Mechanism of Ternary Nuclear Fission. Moscow Univ. Phys. 76, 320–325 (2021). https://doi.org/10.3103/S0027134921050179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134921050179

Keywords:

Navigation