Skip to main content
Log in

The Characteristics of a Nanosecond Surface Sliding Discharge in a Supersonic Airflow Flowing around a Thin Wedge

  • Chemical Physics, Physical Kinetics, and Plasma Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The characteristics of a distributed sliding surface discharge with a duration of ∼300 ns (plasma sheet) in a non-uniform supersonic airflow with a vortex zone behind a thin wedge have been studied in a shock tube channel. The spatial distribution of the discharge radiation, the spectra of the discharge radiation, and the discharge current are analyzed in the flows behind plane shock waves with Mach numbers 2.4–3.5 (the Mach numbers of flows are 1.16–1.47 and the density is 0.02–0.20 kg/m3). It is shown that in an airflow with a vortex zone, the surface discharge develops as a 1–3-mm-wide channel located in the region of low density behind the wedge. The calculated electron concentration in the discharge channel is an order of magnitude higher than the electron concentration when a discharge is initiated in a homogeneous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Yu. Georgievskii and V. A. Levin, Teplofiz. Vys. Temp. 48, 77 (2010).

    Google Scholar 

  2. A. A. Zheltovodov and E. A. Pimonov, Tech. Phys. Lett. 43, 739 (2017). https://doi.org/10.1134/S1063785017080284.

    Article  ADS  Google Scholar 

  3. N. Benard and E. Moreau, Exp. Fluids 55, 1846 (2014). https://doi.org/10.1007/s00348-014-1846-x.

    Article  Google Scholar 

  4. D. Bayoda, N. Benard, and E. Moreau, J. Appl. Phys. 118, 063301 (2015). https://doi.org/10.1063/1.4927844.

    Article  ADS  Google Scholar 

  5. A. Russell, H. Zare-Behtash, and K. Kontis, J. Electrost. 80, 34 (2016). https://doi.org/10.1016/j.elstat.2016.01.004.

    Article  Google Scholar 

  6. A. Starikovskiy and N. Aleksandrov, Prog. Energy Combust. Sci. 39, 61 (2013). https://doi.org/10.1016/j.pecs.2012.05.003.

    Article  Google Scholar 

  7. Y. Ju and W. Sun, Prog. EnergyCombust. Sci. 48, 21 (2015). https://doi.org/10.1016/j.pecs.2014.12.002.

    Article  Google Scholar 

  8. I. V. Mursenkova, I. A. Znamenskaya, and A. E. Lutsky, J. Phys.D: Appl. Phys. 51, 105201 (2018). https://doi.org/10.1088/1361-6463/aaa838.

    Article  ADS  Google Scholar 

  9. I. V. Mursenkova, A. S. Sazonov, and Yu. Liao, Tech. Phys. Lett. 44, 157 (2018). https://doi.org/10.1134/S1063785018020256.

    Article  Google Scholar 

  10. A. I. Alekseev, V. A. Chernikov, and D. N. Vaulin, Moscow Univ. Phys. Bull. 70, 251 (2015). https://doi.org/10.3103/S0027134915040025.

    Article  ADS  Google Scholar 

  11. V. M. Shibkov, L. V. Shibkova, and A. A. Logunov, Moscow Univ. Phys. Bull. 72, 294 (2017). https://doi.org/10.3103/S0027134917030109.

    Article  ADS  Google Scholar 

  12. I. A. Znamenskaya, D. F. Latfullin, A. E. Lutsky, I. V. Mursenkova, and N. N. Sysoev, Tech. Phys. 52, 546 (2007). https://doi.org/10.1134/S1063784207050027.

    Article  Google Scholar 

  13. I. A. Znamenskaya, D. F. Latfullin, A. E. Lutskii, and I. V. Mursenkova, Tech. Phys. Lett. 36, 795 (2010). https://doi.org/10.1134/S1063785010090063.

    Article  ADS  Google Scholar 

  14. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer, Berlin, 1991).

    Google Scholar 

  15. J. D. Parisse, L. Leger, E. Depussay, et al., Phys. Fluids 21, 1063 (2009). https://doi.org/10.1063/1.3234365.

    Article  Google Scholar 

  16. I. Yu. Kudryashov, A. E. Lutsky, and Ya. V. Khankhasaeva, Math. Models Comput. Simul. 8, 207 (2016). https://doi.org/10.1134/S2070048216020083.

    Article  MathSciNet  Google Scholar 

  17. I. A. Znamenskaya, I. E. Ivanov, E. Yu. Koroteeva, and D. M. Orlov, Moscow Univ. Phys. Bull. 67, 541 (2012). https://doi.org/10.3103/S0027134912060148.

    Article  ADS  Google Scholar 

  18. G. S. Glushko, I. E. Ivanov, and I. A. Kryukov, Math. Models Comput. Simul. 2, 407 (2010). https://doi.org/10.1134/S2070048210040010.

    Article  MathSciNet  Google Scholar 

  19. N. O. Arkhipov, I. A. Znamenskaya, I. V. Mursenkova, I. Yu. Ostapenko, and N. N. Sysoev, Moscow Univ. Phys. Bull. 69, 96 (2014). https://doi.org/10.3103/S0027134914010020.

    Article  ADS  Google Scholar 

  20. A. Starikovskiy and N. Aleksandrov, in Aeronautics and Astronautics, Ed. by M. Mulder (IntechOpen, 2011), p. 55. https://doi.org/10.5772/22396.

  21. H. Brunet and P. Vincent, J. Appl. Phys. 50, 4708 (1979). https://doi.org/10.1063/1.326527.

    Article  ADS  Google Scholar 

  22. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Academic, New York, 1968).

    Google Scholar 

  23. I. E. Ivanov, I. A. Kryukov, D. M. Orlov, et al., Exp. Fluids 48, 607 (2010). https://doi.org/10.1007/s00348-009-0714-6.

    Article  Google Scholar 

Download references

Funding

This work was carried out under the support of the Russian Foundation for Basic Research (project no. 19-08-00661).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Mursenkova or Yu. Liao.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 3, pp. 50–56.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mursenkova, I.V., Liao, Y., Ivanov, I.E. et al. The Characteristics of a Nanosecond Surface Sliding Discharge in a Supersonic Airflow Flowing around a Thin Wedge. Moscow Univ. Phys. 74, 269–276 (2019). https://doi.org/10.3103/S0027134919030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919030093

Keywords

Navigation