Skip to main content
Log in

Threshold fields for stimulated Brillouin scattering in spatially limited plasma

  • Radiophysics, Electronics, Acoustics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Brillouin scattering in an infinite medium is anisotropic, in this case the threshold of absolute instability is caused by attenuation of scattered waves. If the collision attenuation mechanism prevails, the minimum threshold value is observed during backward scattering. For a scattering region limited in the longitudinal direction (parallel to the direction of pumping wave propagation), the backward scattering threshold will be greater than for an infinite medium due to convective loss associated with energy removal by scattered waves. In this paper, the scattering of a wide wave beam in plasma is considered, whose dimension in the transverse direction to the pumping wave propagation substantially exceeds the dimension in the longitudinal direction. It was revealed that in this case, during angle scattering the instability threshold can be less than the threshold for backward scattering due to the increased time of radiation removal from the interaction region. This effect was not taken into account previously. In turn, the decrease of the threshold leads to increasing the radiation loss, which is important in plasma heating problems. The results can also be used for plasma diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).

    Article  ADS  Google Scholar 

  2. M. Tabak, J. Hammer, M. E. Glinsky, et al., Phys. Plasmas 1, 1626 (1994).

    Article  ADS  Google Scholar 

  3. D. Strickland and G. Mourou, Opt. Commun. 55, 447 (1985).

    Article  ADS  Google Scholar 

  4. Y. Wu, J. Sawyer, Z. Zhang, M. N. Schneider, A. A. Viggiano, Appl. Phys. Lett. 100, 114108 (2012).

    Article  ADS  Google Scholar 

  5. P. A. Sturrock, Phys. Rev. 112, 1488 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  6. L. M. Gorbunov, Sov. Phys. JETP 38, 666 (1973).

    ADS  Google Scholar 

  7. A. Bers, in Handbook of Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (North-Holland, 1983), Vol. 1, p. 451.

    Google Scholar 

  8. J. P. Farmer, B. Ersfeld, and D. A. Jaroszynskiy, Phys. Plasmas 17, 113301 (2010).

    Article  ADS  Google Scholar 

  9. Z. Toroker, V. M. Malkin, and N. J. Fisch, Phys. Plasmas 21, 113110 (2014).

    Article  ADS  Google Scholar 

  10. N. M. Kroll, J. Appl. Phys. 36, 34 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  11. D. L. Bobroff and H. A. Haus, J. Appl. Phys. 38, 390 (1967).

    Article  ADS  Google Scholar 

  12. L. M. Gorbunov, Sov. Tech. Phys. 22, 19 (1977).

    Google Scholar 

  13. S. Kalmykov and P. Mora, Phys. Plasmas 12, 053101 (2005).

    Article  ADS  Google Scholar 

  14. S. Yu. Kalmykov, Plasma Phys. Rep. 26, 938 (2000).

    Article  ADS  Google Scholar 

  15. E. J. Turano and C. J. McKinstrie, Phys. Plasmas 7, 5096 (2000). doi 10.1063/1.1319332

    Article  ADS  Google Scholar 

  16. E. Turano, PhD Thesis (University of Rochester, New York, 1998).

    Google Scholar 

  17. V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Plasmas 7, 2232 (2000). doi 10.1063/1.874051

    Article  ADS  Google Scholar 

  18. L. M. Gorbunov, Sov. Phys. Usp. 16, 217 (1973).

    Article  ADS  Google Scholar 

  19. L. M. Gorbunov, Introduction to Nonlinear Plasma Electrodynamics (FIAN, Moscow, 2009).

    Google Scholar 

  20. L. M. Gorbunov, Sov. Phys. JETP 38, 490 (1973).

    ADS  Google Scholar 

  21. L. M. Gorbunov, Sov. Phys. JETP 40, 688 (1974).

    ADS  Google Scholar 

  22. K. N. Ovchinnikov and D. K. Solikhov, Bull. Lebedev Phys. Inst. 37, 297 (2010).

    Article  ADS  Google Scholar 

  23. D. K. Solikhov, K. N. Ovchinnikov, and S. A. Dvinin, Moscow Univ. Phys. Bull. 67, 62 (2012). doi 10.3103/S0027134912010171

    Article  ADS  Google Scholar 

  24. D. K. Solikhov and S. A. Dvinin, Plasma Phys. Rep. 42, 576 (2016). doi doi 10.1134/S1063780X16060076

    Article  ADS  Google Scholar 

  25. A. F. Alexandrov, A. A. Rukhadze, and L. S. Bogdankevich, Principles of Plasma Electrodynamics (Vysshaya Shkola, Moscow, 1978; Springer, Heidelberg, 1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Dvinin.

Additional information

Original Russian Text © S.A. Dvinin, D.K. Solikhov, Sh.S. Nurulkhakov, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 4, pp. 16–21.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvinin, S.A., Solikhov, D.K. & Nurulkhakov, S.S. Threshold fields for stimulated Brillouin scattering in spatially limited plasma. Moscow Univ. Phys. 72, 345–350 (2017). https://doi.org/10.3103/S0027134917040051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917040051

Keywords

Navigation