Skip to main content
Log in

Nonlinear Dynamics of a Micromechanical Non-Contact Induction Suspension

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The article constructs and studies a nonlinear electromechanical model of the motion of a microscale conductive non-deformable ring in a non-contact electromagnetic induction suspension. The equilibrium positions of the ring were analytically found, their stability was investigated, and the corresponding bifurcation diagrams were constructed. Using asymptotic methods of nonlinear mechanics, the nonlinear dynamics of the system near its equilibrium position is studied. The system was linearized near its equilibrium position and an expression for the magnetic stiffness of the suspension was obtained. The possibility of using electrostatic fields to control the value of the total linear rigidity of a levitating suspension is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. R. F. Post and D. D. Ryutov, “The inductrack: A simpler approach to magnetic levitation,” IEEE Trans. Appl. Supercond. 10 (1), 901–904 (2000). https://doi.org/10.1109/77.828377

    Article  ADS  Google Scholar 

  2. A. A. Kordyuk, “Magnetic levitation for hard superconductors,” J. Appl. Phys. 83 (1), 610–612 (1998). https://doi.org/10.1063/1.366648

    Article  CAS  ADS  Google Scholar 

  3. O. V. Kryukov, “Benefits of the electromagnetic suspension intended for the electric drive motors of gas compression units,” Glavnii Energetik 5–6 (9), 16–23 (2015).

  4. H. Han and D. Kim, Magnetic Levitation (Springer, 2016). https://doi.org/10.1007/978-94-017-7524-3

    Book  Google Scholar 

  5. J. Maxwell, Electricity and Magnetism, Vol. 2 (Dover, New York, 1954).

    Google Scholar 

  6. K. V. Poletkin, A. I. Chernomorsky, and C. Shearwood, “Proposal for micromachined accelerometer, based on a contactless suspension with zero spring constant,” IEEE Sens. J. 12 (7), 2407–2413 (2012). https://doi.org/10.1109/JSEN.2012.2188831

    Article  ADS  Google Scholar 

  7. K. V. Poletkin, A. Asadollahbaik, R. Kampmann, and J. Korvink, “Levitating micro-actuators: A review,” Actuators 7 (2), 17 (2018). https://doi.org/10.3390/act7020017

    Article  Google Scholar 

  8. Z. Lu, K. Poletkin, B.den Hartogh, et al., “3D micro-machined inductive contactless suspension: Testing and modeling,” Sens. Actuator A Phys. 220, 134–143 (2014). https://doi.org/10.1016/j.sna.2014.09.017

  9. K. Poletkin, Z. Lu, U. Wallrabe, and V. Badilita, “A new hybrid micromachined contactless suspension with linear and angular positioning and adjustable dynamics,” J. Microelectromech. Syst. 24 (5), 1248–1250 (2015). https://doi.org/10.1109/JMEMS.2015.2469211

    Article  Google Scholar 

  10. K. Poletkin, Z. Lu, U. Wallrabe, et al., “Stable dynamics of micro-machined inductive contactless suspensions,” Int. J. Mech. Sci. 131–132, 753–766 (2017). https://doi.org/10.1016/j.ijmecsci.2017.08.016

    Article  Google Scholar 

  11. K. Poletkin, “On the static pull-in of tilting actuation in electromagnetically levitating hybrid micro-actuator: Theory and experiment,” Actuators. 10 (10), 256. https://doi.org/10.3390/act10100256

  12. K. V. Poletkin, “Static pull-in behavior of hybrid levitation microactuators: Simulation, modeling, and experimental study,” IEEE/ASME Trans. Mechatron. 26 (2) 753–764 (2021). https://doi.org/10.1109/TMECH.2020.2999516

    Article  Google Scholar 

  13. J. van de Vegte, “Feedback control systems,” Automatica 6 (32), 945–946 (1996).

    Google Scholar 

  14. K. V. Poletkin, R. Shalati, J. G. Korvink, and V. Badilita, “Pull-in actuation in hybrid micromachined contactless suspension,” J. Phys.: Conf. Ser. 1052, 012035 (2018). https://doi.org/10.1088/1742-6596/1052/1/012035

  15. K. Poletkin, Z. Lu, U. Wallrabe, et al., “A qualitative technique to study stability and dynamics of micro-machined inductive contactless suspensions,” in 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 2017 (IEEE, 2017), pp. 528–531. https://doi.org/10.1109/TRANSDUCERS.2017.7994102

  16. K. V. Poletkin, “Calculation of magnetic force and torque between two arbitrarily oriented circular – laments using Kalantarov–Zeitlin’s method,” Int. J. Mech. Sci. 220, 107159 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107159

  17. K. Poletkin, Levitation Micro-Systems: Applications to Sensors and Actuators (Springer Nature, 2020). https://doi.org/10.1007/978-3-030-58908-0

    Book  Google Scholar 

  18. E. Rosa and F. Grover, Formulas and Tables for the Calculation of Mutual and Self-Inductance, No. 169 (US Gov. Printing Office, 1948).

  19. K. V. Poletkin and J. G. Korvink, “Modeling a pull-in instability in micro-machined hybrid contactless suspension,” Actuators 7 (1), 11 (2018). https://doi.org/10.3390/act7010011

    Article  Google Scholar 

  20. Z. Lu, K. Poletkin, U. Wallrabe, and V. Badilita, “Performance characterization of micromachined inductive suspensions based on 3D wire-bonded microcoils,” Micromach. 5 (4), 1469–1484 (2014). https://doi.org/10.3390/mi5041469

    Article  Google Scholar 

  21. I. E. Tamm, Fundamentals of the Theory of Electricity (Fizmatlit, Moscow, 2003; Mir Publ., Moscow, 1979).

  22. P. L. Kalantarov and L. A. Tseitlin, Calculation of Inductances. Reference Book (Energoatomizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  23. A. H. Nayfeh, Perturbation Methods (John Wiley & Sons, 2008). https://doi.org/10.1002/9783527617609

    Book  Google Scholar 

  24. Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer-Verlag, 1998). https://doi.org/10.1007/978-1-4757-3978-7

    Book  Google Scholar 

  25. A. Dhooge, W. Govaerts, and Yu.A. Kuznetsov, “MATCONT: A MATLAB Package for numerical bifurcation analysis of ODEs,” ACM Trans. Math. Softw. 29 (2), 141–164 (2003). https://doi.org/10.1145/779359.779362

    Article  MathSciNet  Google Scholar 

  26. D. Higham and N. Higham, MATLAB Guide, 3rd ed. (SIAM, 2017). ISBN: 978-1-61197-465-2

    Google Scholar 

  27. C. B. Williams, C. Shearwood, P. H. Mellor, and R. B. Yates, “Modelling and testing of a frictionless levitated micromotor,” Sens. Actuator A Phys. 61 (1), 469–473 (1997). https://doi.org/10.1016/S0924-4247(97)80307-X

Download references

Funding

The study was supported by the Russian Science Foundation, grant no. 21-71-10009, https://rscf.ru/project/21-71-10009/

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Yu. Skubov, D. A. Indeitsev, P. P. Udalov, I. A. Popov, A. V. Lukin or K. V. Poletkin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by I. Katuev

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skubov, D.Y., Indeitsev, D.A., Udalov, P.P. et al. Nonlinear Dynamics of a Micromechanical Non-Contact Induction Suspension. Mech. Solids 58, 2011–2023 (2023). https://doi.org/10.3103/S0025654423600307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423600307

Keywords:

Navigation