Skip to main content
Log in

Reflection and Refraction Phenomenon of Waves At The Interface of Two Non-Local Couple Stress Micropolar Thermoelastic Solid Half-Spaces

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

We have discussed reflection and refraction phenomenon of wave propagation from a plane interface dividing the non-local couple stress micropolar thermoelastic medium into two half-spaces. we have examined the problem by making incidence of two sets of coupled longitudinal waves and two sets of coupled transverse waves. Here, we observed that there exist five waves, viz., two sets of coupled longitudinal waves, two sets of coupled transverse waves and a longitudinal microrotational wave in non-local couple stress thermoelastic micropolar solid. One of them is propagating independently while others are set of coupled waves. We have also observed that these waves are propagating with different speeds. By making incidence of different waves; the reflection and refraction coefficients of numerous waves against the angle of incidence and angular frequency has been evaluated and portrayed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.

Similar content being viewed by others

REFERENCES

  1. A. C. Eringen, Microcontinum Theories I: Foundations and Solids (Springer, New York, 1999).

  2. A. Najafi, M. Eghtesad, and F. Daneshmand, “Boundary stabilization of vibration of nonlocal micropolar elastic media,” Appl. Math. Model. 36, 3447–3453 (2012). https://doi.org/10.1016/j.apm.2011.09.091

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Lazar and H. O. K. Kirchner, “The Eshelby tensor in nonlocal elasticity and in nonlocal micropolar elasticity,” J. Mech. Mat. Struct. 1, 325–327 (2006). https://doi.org/10.2140/JOMMS.2006.1.325

    Article  Google Scholar 

  4. J. Wang and R. S. Dhaliwal, “On some theorems in the nonlocal theories of micropolar elasticity,” Int. J. Solids Struct. 44, 1331–1338 (1993). https://doi.org/10.1016/0020-7683(93)90215-S

    Article  MATH  Google Scholar 

  5. X. Zeng, Y. Chen, and J. D. Lee, “Determining material constants in nonlocal micromorphic theory through phonon dispersion relations,” Int. J. Eng. Sci. 44, 1334–1345 (2006). https://doi.org/10.1016/j.ijengsci.2006.08.002

    Article  Google Scholar 

  6. A. C. Eringen, “Plane waves in nonlocal micropolar elasticity,” Int. J. Eng. Sci. 22, 1113–1121 (1984). https://doi.org/10.1016/0020-7225(84)90112-5

    Article  MATH  Google Scholar 

  7. S. Erbay, H. A. Erbay, and S. Dost, “Non linear wave interactions in a micropolar elastic medium”, Wave Motion 16, 163–172 (1992). https://doi.org/10.1016/0165-2125(92)90040-9

    Article  ADS  MATH  Google Scholar 

  8. S. K. Tomar and A. Khurana, “Wave interface of nonlocal micropolar elastic half-spaces,” Int. J. Mech. Ad. Mater. Struct. 26, 825–833 (2016). https://doi.org/10.1080/15376494.2018.1430261

    Article  Google Scholar 

  9. A. C. Eringen, “Nonlocal polar elastic continua”, Int. J. Eng. Sci. 10, 1–16 (1972). https://doi.org/10.1016/0020-7225(72)90070-5

    Article  MathSciNet  MATH  Google Scholar 

  10. A. C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002).

    MATH  Google Scholar 

  11. A. C. Eringen, “Linear theory of nonlocal elasticity and dispersion of plane waves,” Int. J. Eng. Sci. 10, 425-435 (1972). https://doi.org/10.1016/0020-7225(72)90050-X

    Article  MATH  Google Scholar 

  12. A. C. Eringen and D. G. B. Edelen, “On nonlocal elasticity,” Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Voigt, “Theoritiscke studien iiber die elastizitats verhaltnisse der krystalle,” Abh. Braunschw. Wiss. Ges. 34, 3–52 (1887).

    Google Scholar 

  14. E. Cosserat and F. Cosserat, Theorie des Corps Deformables (Hermann et Fils, Paris, 1909).

    MATH  Google Scholar 

  15. R.A. Toupin, “Elastic materials with couple-stresses,” Arch. Ration. Mech. Anal. 11, 385–414 (1962). https://doi.org/10.1007/bf00253945

    Article  MathSciNet  MATH  Google Scholar 

  16. R.D. Mindlin and H.F. Tiersten, “Effects of couple-stresses in linear elasticity,” Arch. Ration. Mech. Anal. 11, 415–448 (1962). https://doi.org/10.1007/BF00253946

    Article  MathSciNet  MATH  Google Scholar 

  17. A.C. Eringen and E.S. Suhubi, “Nonlinear theory of simple micro-elastic solids- I,” Int. J. Eng. Sci. 2, 189–203 (1964). https://doi.org/10.1016/0020-7225(64)90004-7

    Article  MathSciNet  MATH  Google Scholar 

  18. E.S. Suhubi and A.C. Eringen, “Nonlinear theory of simple micro-elastic solids - II,” Int. J. Eng. Sci. 2, 389–404 (1964). https://doi.org/10.1016/0020-7225(64)90004-7

    Article  MATH  Google Scholar 

  19. A.C. Eringen, “Linear theory of micropolar elasticity,” J. Math. Mech. 15, 909–923 (1966). https://doi.org/10.21236/ad0473723

    Article  MathSciNet  MATH  Google Scholar 

  20. A.C. Eringen, Foundations of Micropolar Thermoelasticity (Springer, Vienna, 1070). https://doi.org/10.1007/978-3-7091-2904-3

  21. A.C. Eringen, Microcontinum Field Theories. I. Foundations and Solids) (Springen-Verlag, Berlin, 1999).

    Book  Google Scholar 

  22. W. Nowacki, Theory of Asymmetric Elasticity (Pergamon, Oxford, 1986).

    MATH  Google Scholar 

  23. E. Boschi and D. Iesan, “A generalised theory of linear micropolar thermoelasticity,” Meccanica 7, 154–157 (1973). https://doi.org/10.1007/BF02128724

    Article  MATH  Google Scholar 

  24. A.E. Green and P.M. Naghdi, “A re-examination of basic postulates of thermomechanics,” Proc. Roy. Soc. Lond. A 432, 171–194 (1991). https://doi.org/10.1098/rspa.1991.0012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. A.E. Green and P.M. Naghdi, “On thermodynamics and nature of second law,” Proc. Roy. Soc. Lond. A 357, 253–270 (1977). https://doi.org/10.1093/QJMAM/31.3.265

    Article  ADS  MathSciNet  Google Scholar 

  26. A.E. Green and P.M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity 31, 189–209 (1993). https://doi.org/10.1007/BF00044969

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Ciarletta, “A theory of micropolar thermoelasticity without energy dissipation,” J. Therm. Stres. 22, 581–594 (1999). https://doi.org/10.1080/014957399280760

    Article  MathSciNet  Google Scholar 

  28. D.S. Chandrasekhariah, “Hyperbolic thermoelasticity,” App. Mech. Rev. 51, 705–729 (1998). https://doi.org/10.1115/1.3098984

    Article  Google Scholar 

  29. I. Farkas and A. Szekers, “Application of modified law of heat conduction and state equation to dynamical problem of thermoelasticity,” Periodica Polyt. Mech. Eng. 28, 163–170 (1984).

    ADS  Google Scholar 

  30. A. Szekers, “Equation system of thermoelasticity using the modified law of thermal conductivity,” Periodica Polyt. Mech. Eng. 24, 253-261 (1980).

    Google Scholar 

  31. A.M. Biot, Mechanics of Incremental Deformations (John Wiley, New York, 1965).

    Book  Google Scholar 

  32. R.B. Hetnarski and J. Ignaczak, “Generalised thermoelasticity,” J. Therm. Stres. 22, 451–476 (1999). https://doi.org/10.1080/01495739308946241

    Article  Google Scholar 

  33. H. Lord and Y. Shulman, “A generalised dynamical theory of thermoelasticity,” J. Mech. Phy. Solids 15, 299-309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  ADS  MATH  Google Scholar 

  34. A.E Green and K.A. Lindsay, “Thermoelasticity,” J. Elasticity 2, 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  MATH  Google Scholar 

  35. R.B. Hetnarski and J. Ignaczak, “Solution like wave in a low temperature nonlinear thermoelastic solid,” Int. J. Eng. Sci. 4, 1767–1787 (1996). https://doi.org/10.1016/0020-7225(95)00026-T

    Article  MATH  Google Scholar 

  36. N. Sarkar and S. K. Tomar, “Plane waves in nonlocal thermoelastic solid with voids,” J. Therm. Stres. 42, 580–606 (2019). https://doi.org/10.1080/01495739.2018.1554395

    Article  Google Scholar 

  37. R.K. Sahrawat, Poonam, and K. Kumar, “Plane wave and fundamental solution in non-local couple stress micropolar thermoelastic solid without energy dissipation,” J. Therm. Stres. 44, 1–20 (2020). https://doi.org/10.1080/01495739.2020.1860728

    Article  Google Scholar 

  38. R.K. Sahrawat, Poonam, and K. Kumar, “Wave propagation in nonlocal couple stress thermoelastic solid,” AIP Conf. Proc. 2253, 020026 (2020). https://doi.org/10.1063/5.0018979

  39. R.K. Sahrawat and Poonam, “Reflection-refraction coefficients and energy ratios in couple stress micropolar thermoviscous elastic solid,” Int. J. Appl. Mech. Eng. 26, 47–65 (2021). https://doi.org/10.2478/ijame-2021-0019

    Article  Google Scholar 

  40. Poonam, R.K. Sahrawat, K. Kumar, et al., “Plane wave propagation in functionally graded isotropic couple stress thermoelastic solid media under initial stress and gravity,” Eur. Phy. J. Plus 136, 1–32 (2021). https://doi.org/10.1140/epjp/s13360-021-01097-5

    Article  Google Scholar 

  41. Poonam, R.K. Sahrawat, and K. Kumar, “Plane wave propagation and fundamental solution in non-local couple stress micropolar thermoelastic solid medium with voids,” Waves Rand. Comp. Media (2021). https://doi.org/10.1080/17455030.2021.1921312

    Book  Google Scholar 

  42. Poonam and R.K. Sahrawat, “Wave propagation in couple stress viscoelastic generalized thermoelastic solid,” Mech. Solids 56, 1047тoб1065 (2021). https://doi.org/10.3103/S0025654421060157

  43. J. D. Achenbach, Wave Propagation in Elastic Solids (North Holland, Amsterdam, 1973).

    MATH  Google Scholar 

  44. S.K. Tomar and A. Khurana, “Waves at the interface of dissimilar nonlocal micropolar elastic half-spaces,” Mech. Add. Mater. Struct. 26, 825–833 (2018). https://doi.org/10.1080/15376494.2018.1430261

    Article  Google Scholar 

  45. B. Kumar, R. Kumar, and S. Kaushal, “ Viscosity effect on reflection and transmission coefficients between two micropolar viscothermoelastic half spaces with three-phase legs,” Int. J. Eng. Sci. Res. Tech. 9, 2348–2369 (2017). https://doi.org/10.5281/zenodo.1042076

    Article  Google Scholar 

  46. S.K. Tomar and A. Khurana, “Transmission of longitudinal wave at plane interface between micropolar elastic and chiral solid half-spaces incident from micropolar half-spaces,” J. Sound Vib. 311, 973–990 (2008). https://doi.org/10.1016/J.JSV.2007.09.032

    Article  ADS  Google Scholar 

Download references

Funding

One of the author (Sonam) is grateful to CSIR for financial support in terms of Junior Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravinder Kumar Sahrawat, Krishan Kumar, Poonam or Sonam Rani.

Appendices

APPENDIX A1

$${{a}_{{11}}} = 1,\quad {{a}_{{12}}} = \left[ {\lambda {\kern 1pt} '\, + (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')(1 - s_{{21}}^{2}{{{\sin }}^{2}}{{\theta }_{0}}) + \frac{{\beta _{0}^{'}{{\zeta }_{2}}}}{{l_{2}^{2}}}} \right]{\text{/}}{{D}_{1}}s_{{21}}^{2},$$
$${{a}_{{1s}}} = (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')\sin {{\theta }_{0}}\sqrt {(1 - s_{{s1}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{1}}{{s}_{{s1}}},$$
$${{a}_{{1t}}} = - [\lambda ''\, + (2\mu ''\, + K'')(1 - S_{{t1}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + \beta _{0}^{{''}}\zeta _{t}^{'}]{\text{/}}{{D}_{1}}S_{{t1}}^{{'2}},$$
$${{a}_{{1q}}} = (2\mu {\kern 1pt} ''\, + K{\kern 1pt} '')\sin {{\theta }_{0}}\sqrt {(1 - S_{{q1}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{1}}S_{{q1}}^{'},$$
$${{a}_{{21}}} = \sin {{\theta }_{0}}\cos {{\theta }_{0}},\quad {{a}_{{22}}} = \sin {{\theta }_{0}}\sqrt {(1 - s_{{21}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{21}}},$$
$${{a}_{{2s}}} = - \left[ {\mu {\kern 1pt} '(1 - 2s_{{s1}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + K{\kern 1pt} '(1 - s_{{s1}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) - \frac{{K'{{\eta }_{s}}}}{{l_{s}^{2}}}} \right]{\text{/}}{{D}_{2}}s_{{s1}}^{2},$$
$${{a}_{{2t}}} = (2\mu {\kern 1pt} ''\, + K{\kern 1pt} '')\sin {{\theta }_{0}}\sqrt {(1 - S_{{t1}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{2}}S_{{t1}}^{'},$$
$${{a}_{{2q}}} = [\mu {\kern 1pt} ''(1 - 2S_{{q1}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + K{\kern 1pt} ''(1 - S_{{q1}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) - K{\kern 1pt} ''\eta _{q}^{'}]{\text{/}}{{D}_{2}}S_{{q1}}^{{'2}},$$
$${{a}_{{33}}} = \sqrt {1 - s_{{31}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}{{s}_{{31}}},\quad {{a}_{{34}}} = {{\eta }_{4}}\sqrt {1 - s_{{41}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}{{\eta }_{3}}{{s}_{{41}}},$$
$${{a}_{{37}}} = \gamma {\kern 1pt} '\eta _{3}^{'}\sqrt {1 - s_{{31}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}s_{{31}}^{'}\gamma {\kern 1pt} '{{\eta }_{3}},\quad {{a}_{{38}}} = \gamma ''\eta _{4}^{'}\sqrt {1 - s_{{41}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}s_{{41}}^{'}\gamma {\kern 1pt} '{{\eta }_{3}},$$
$${{a}_{{41}}} = \cos {{\theta }_{0}},\quad {{a}_{{42}}} = {{\zeta }_{2}}\sqrt {(1 - s_{{21}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{\zeta }_{1}}{{s}_{{21}}},$$
$${{a}_{{45}}} = Y{\kern 1pt} '\zeta _{1}^{'}\sqrt {1 - s_{{11}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}Y{\kern 1pt} '{{\zeta }_{1}}s_{{11}}^{'},\quad {{a}_{{46}}} = Y''\zeta _{2}^{'}\sqrt {1 - s_{{21}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}Y{\kern 1pt} '{{\zeta }_{1}}s_{{21}}^{'},$$
$${{a}_{{51}}} = \sin {{\theta }_{0}} = {{a}_{{52}}},\quad {{a}_{{5s}}} = - \sqrt {(1 - s_{{s1}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{s1}}},\quad {{a}_{{55}}} = - \sin {{\theta }_{0}} = {{a}_{{56}}},$$
$${{a}_{{5q}}} = - \sqrt {(1 - S_{{q1}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}S_{{q1}}^{'},\quad {{a}_{{61}}} = \cos {{\theta }_{0}},\quad {{a}_{{62}}} = \sqrt {(1 - s_{{21}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{21}}},$$
$${{a}_{{63}}} = \sin {{\theta }_{0}} = {{a}_{{64}}},\quad {{a}_{{6t}}} = \sqrt {(1 - S_{{t1}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}S_{{t1}}^{'},\quad {{a}_{{67}}} = - \sin {{\theta }_{0}} = {{a}_{{68}}},\quad {{a}_{{73}}} = 1,$$
$${{a}_{{74}}} = {{\eta }_{4}}{\text{/}}{{\eta }_{3}},\quad {{a}_{{77}}} = - \eta _{3}^{'}{\text{/}}{{\eta }_{3}},\quad {{a}_{{78}}} = - \eta _{4}^{'}{\text{/}}{{\eta }_{3}},\quad {{a}_{{81}}} = 1,\quad {{a}_{{82}}} = {{\zeta }_{2}}{\text{/}}{{\zeta }_{1}},$$
$${{a}_{{85}}} = - \zeta _{1}^{'}{\text{/}}{{\zeta }_{1}},\quad {{a}_{{86}}} = - \zeta _{2}^{'}{\text{/}}{{\zeta }_{1}},$$
$$s = 3,4;\quad t = 5,6;\quad q = 7,8;$$
$${{s}_{{p1}}} = \frac{{{{S}_{p}}}}{{{{S}_{1}}}},(p = 2,3,4),\quad s_{{r1}}^{'} = \frac{{S_{r}^{'}}}{{{{S}_{1}}}},\quad (r = 1,2,3,4),$$
$$S_{{51}}^{'} = s_{{11}}^{'},\quad S_{{61}}^{'} = s_{{21}}^{'},\quad S_{{71}}^{'} = s_{{31}}^{'},\quad S_{{81}}^{'} = s_{{41}}^{'},\quad \zeta _{5}^{'} = \frac{{\zeta _{1}^{'}}}{{l_{1}^{{'2}}}},\quad \zeta _{6}^{'} = \frac{{\zeta _{2}^{'}}}{{l_{2}^{{'2}}}},\quad \eta _{7}^{'} = \frac{{\eta _{3}^{'}}}{{l_{3}^{{'2}}}},\quad \eta _{5}^{'} = \frac{{\eta _{4}^{'}}}{{l_{4}^{{'2}}}},$$
$${{D}_{1}} = \left[ {\lambda {\kern 1pt} '\, + (2\mu {\kern 1pt} '\, + K{\kern 1pt} '){{{\cos }}^{2}}{{\theta }_{0}} + \frac{{\beta _{0}^{'}{{\zeta }_{1}}}}{{l_{1}^{2}}}} \right],\quad {{D}_{2}} = (2\mu {\kern 1pt} '\, + K{\kern 1pt} '),\quad {{Y}_{1}} = - 1,\quad {{Y}_{2}} = \sin {{\theta }_{0}}\cos {{\theta }_{0}},$$
$${{Y}_{3}} = 0,\quad {{Y}_{4}} = \cos {{\theta }_{0}},\quad {{Y}_{5}} = - \sin {{\theta }_{0}},\quad {{Y}_{6}} = \cos {{\theta }_{0}},\quad {{Y}_{7}} = 0,\quad {{Y}_{8}} = - 1,$$
$${{E}_{1}} = - Z_{1}^{2},\quad {{E}_{2}} = Z_{2}^{2}{{L}_{1}}\left[ {{{\lambda }_{2}} + {{\mu }_{2}} + \frac{{\beta _{0}^{'}{{\zeta }_{2}}}}{{l_{2}^{2}}} - \frac{{{{K}_{2}}\zeta _{2}^{2}}}{{l_{2}^{2}}}} \right]l_{2}^{3}\cos \theta ,$$
$${{E}_{{3,4}}} = Z_{{3,4}}^{2}{{L}_{1}}\left[ {{{\mu }_{2}} + {{K}_{2}} - \frac{{{{\eta }_{{3,4}}}}}{{l_{{3,4}}^{2}}}\left( {{{\gamma }_{2}}{{\eta }_{{3,4}}} + {{K}_{2}}} \right)} \right]l_{{3,4}}^{3}\cos {{\theta }_{{3,4}}},$$
$${{E}_{{5,6}}} = Z_{{5,6}}^{2}{{L}_{1}}\left[ {\lambda _{2}^{'} + \mu _{2}^{'} + \frac{{\beta _{0}^{{''}}\zeta _{2}^{'}}}{{l_{2}^{{'2}}}} - \frac{{K_{2}^{'}\zeta _{2}^{{'2}}}}{{l_{2}^{{'2}}}}} \right]l_{{1,2}}^{{'3}}\cos \theta _{{1,2}}^{'},$$
$${{E}_{{7,8}}} = Z_{{7,8}}^{2}{{L}_{1}}\left[ {(\mu _{2}^{'} + K_{2}^{'} - \frac{{{{\eta }_{{3,4}}}}}{{l_{{3,4}}^{{'2}}}}(\gamma _{2}^{'}\eta _{{3,4}}^{'} + K_{2}^{'})} \right]l_{{3,4}}^{{'3}}\cos \theta _{{3,4}}^{'},\quad {{L}_{1}} = {{\left[ {{{\lambda }_{2}} + {{\mu }_{2}} + \frac{{\beta _{0}^{'}{{\zeta }_{2}}}}{{l_{1}^{2}}} - \frac{{{{K}_{2}}\zeta _{1}^{2}}}{{l_{1}^{2}}}} \right]}^{{ - 1}}},$$

APPENDIX A2

$${{a}_{{11}}} = \left[ {\lambda {\kern 1pt} '\, + (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')(1 - s_{{12}}^{2}{{{\sin }}^{2}}{{\theta }_{0}}) + \frac{{\beta _{0}^{'}{{\zeta }_{1}}}}{{l_{2}^{2}}}} \right]{\text{/}}{{D}_{3}}s_{{12}}^{2},\quad {{a}_{{12}}} = 1,$$
$${{a}_{{1s}}} = (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')\sin {{\theta }_{0}}\sqrt {(1 - s_{{s2}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{3}}{{s}_{{s2}}},$$
$${{a}_{{1t}}} = - [\lambda ''\, + (2\mu ''\, + K'')(1 - S_{{t2}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + \beta _{0}^{{''}}\zeta _{t}^{'}]{\text{/}}{{D}_{3}}S_{{t2}}^{{'2}},$$
$${{a}_{{1q}}} = (2\mu {\kern 1pt} ''\, + K{\kern 1pt} '')\sin {{\theta }_{0}}\sqrt {(1 - S_{{q2}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{3}}S_{{q2}}^{'},$$
$${{a}_{{21}}} = \sin {{\theta }_{0}}\sqrt {(1 - s_{{12}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{12}}},\quad {{a}_{{22}}} = \sin {{\theta }_{0}}\cos {{\theta }_{0}},$$
$${{a}_{{2s}}} = - \left[ {\mu {\kern 1pt} '(1 - 2s_{{s2}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + K{\kern 1pt} '(1 - s_{{s2}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) - \frac{{K{\kern 1pt} '{{\eta }_{s}}}}{{l_{s}^{2}}}} \right]{\text{/}}{{D}_{2}}s_{{s2}}^{2},$$
$${{a}_{{2t}}} = (2\mu {\kern 1pt} ''\, + K{\kern 1pt} '')\sin {{\theta }_{0}}\sqrt {(1 - S_{{t2}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{2}}S_{{t2}}^{'},$$
$${{a}_{{2q}}} = [\mu {\kern 1pt} ''(1 - 2S_{{q2}}^{{'2}}{{\sin }^{2}}{{\theta }_{0}}) + K{\kern 1pt} ''(1 - S_{{q2}}^{{'2}}{{\sin }^{2}}{{\theta }_{0}}) - K{\kern 1pt} ''{\kern 1pt} \eta _{q}^{'}]{\text{/}}{{D}_{2}}S_{{q2}}^{{'2}},$$
$${{a}_{{33}}} = \sqrt {1 - s_{{32}}^{2}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}{{s}_{{32}}},\quad {{a}_{{34}}} = {{\eta }_{4}}\sqrt {1 - s_{{42}}^{2}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}{{\eta }_{3}}{{s}_{{42}}},$$
$${{a}_{{37}}} = \gamma ''\eta _{3}^{'}\sqrt {1 - s_{{32}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}s_{{32}}^{'}\gamma {\kern 1pt} '{{\eta }_{3}},\quad {{a}_{{38}}} = \gamma {\kern 1pt} ''\eta _{4}^{'}\sqrt {1 - s_{{42}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}s_{{42}}^{'}\gamma {\kern 1pt} '{{\eta }_{3}},$$
$${{a}_{{41}}} = {{\zeta }_{1}}\sqrt {(1 - s_{{12}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{\zeta }_{2}}{{s}_{{12}}},\quad {{a}_{{42}}} = \cos {{\theta }_{0}},$$
$${{a}_{{45}}} = Y{\kern 1pt} ''\zeta _{1}^{'}\sqrt {1 - s_{{12}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}Y{\kern 1pt} '{{\zeta }_{2}}s_{{12}}^{'},\quad {{a}_{{46}}} = Y{\kern 1pt} ''\zeta _{2}^{'}\sqrt {1 - s_{{22}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}Y{\kern 1pt} '{{\zeta }_{2}}s_{{22}}^{'},$$
$${{a}_{{51}}} = {\text{sin}}{{\theta }_{0}} = {{a}_{{52}}},\quad {{a}_{{5s}}} = - \sqrt {(1 - s_{{s2}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{s2}}},\quad {{a}_{{55}}} = - \sin {{\theta }_{0}} = {{a}_{{56}}},$$
$${{a}_{{5q}}} = - \sqrt {(1 - S_{{q2}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}S_{{q2}}^{'},\quad {{a}_{{61}}} = \sqrt {(1 - s_{{12}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{12}}},\quad {{a}_{{62}}} = \cos {{\theta }_{0}},$$
$${{a}_{{63}}} = \sin {{\theta }_{0}} = {{a}_{{64}}},\quad {{a}_{{6t}}} = \sqrt {(1 - S_{{t2}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}S_{{t2}}^{'},\quad {{a}_{{67}}} = - {\text{sin}}{{\theta }_{0}} = {{a}_{{68}}},\quad {{a}_{{73}}} = 1,$$
$${{a}_{{74}}} = {{\eta }_{4}}{\text{/}}{{\eta }_{3}},\quad {{a}_{{77}}} = - \eta _{3}^{'}{\text{/}}{{\eta }_{3}},\quad {{a}_{{78}}} = - \eta _{4}^{'}{\text{/}}{{\eta }_{3}},\quad {{a}_{{81}}} = {{\zeta }_{{\text{1}}}}{\text{/}}{{\zeta }_{2}},$$
$${{a}_{{82}}} = 1,\quad {{a}_{{85}}} = - \zeta _{1}^{'}{\text{/}}{{\zeta }_{2}},\quad {{a}_{{86}}} = - \zeta _{2}^{'}{\text{/}}{{\zeta }_{2}},$$
$${{s}_{{p2}}} = \frac{{{{S}_{p}}}}{{{{S}_{2}}}},(p = 1,3,4),\quad s_{{r2}}^{'} = \frac{{S_{r}^{'}}}{{{{S}_{2}}}},(r = 1,2,3,4),\quad S_{{52}}^{'} = s_{{12}}^{'},\quad S_{{62}}^{'} = s_{{22}}^{'},,$$
$$S_{{72}}^{'} = s_{{32}}^{'},\quad S_{{82}}^{'} = s_{{42}}^{'},\quad {{D}_{3}} = \left[ {\lambda {\kern 1pt} '\, + (2\mu {\kern 1pt} '\, + K{\kern 1pt} '){\text{co}}{{{\text{s}}}^{2}}{{\theta }_{0}} + \frac{{\beta _{0}^{'}{{\zeta }_{2}}}}{{l_{2}^{2}}}} \right],$$
$${{E}_{1}} = Z_{1}^{2}{{L}_{2}}\left[ {{{\lambda }_{2}} + {{\mu }_{2}} + \frac{{\beta _{0}^{'}{{\zeta }_{1}}}}{{l_{1}^{2}}} - \frac{{{{K}_{2}}\zeta _{1}^{2}}}{{l_{1}^{2}}}} \right]l_{1}^{3}{\text{cos}}\theta ,\quad {{E}_{2}} = - Z_{2}^{2},$$
$${{E}_{{3,4}}} = Z_{{3,4}}^{2}{{L}_{2}}\left[ {{{\mu }_{2}} + {{K}_{2}} - \frac{{{{\eta }_{{3,4}}}}}{{l_{{3,4}}^{2}}}\left( {{{\gamma }_{2}}{{\eta }_{{3,4}}} + {{K}_{2}}} \right)} \right]l_{{3,4}}^{3}\cos {{\theta }_{{3,4}}},$$
$${{E}_{{5,6}}} = Z_{{5,6}}^{2}{{L}_{2}}\left[ {\lambda _{2}^{'} + \mu _{2}^{'} + \frac{{\beta _{0}^{{''}}\zeta _{2}^{'}}}{{l_{2}^{{'2}}}} - \frac{{K_{2}^{'}\zeta _{2}^{{'2}}}}{{l_{2}^{{'2}}}}} \right]l_{{1,2}}^{{'3}}\cos \theta _{{1,2}}^{'},$$
$${{E}_{{7,8}}} = Z_{{7,8}}^{2}{{L}_{2}}\left[ {(\mu _{2}^{'} + K_{2}^{'} - \frac{{{{\eta }_{{3,4}}}}}{{l_{{3,4}}^{{'2}}}}(\gamma _{2}^{'}\eta _{{3,4}}^{'} + K_{2}^{'})} \right]l_{{3,4}}^{{'3}}{\text{cos}}\theta _{{3,4}}^{'},\quad {{L}_{2}} = {{\left[ {{{\lambda }_{2}} + {{\mu }_{2}} + \frac{{\beta _{0}^{'}{{\zeta }_{2}}}}{{l_{2}^{2}}} - \frac{{{{K}_{2}}\zeta _{2}^{2}}}{{l_{2}^{2}}}} \right]}^{{ - 1}}}.$$

APPENDIX B1

$${{h}_{{1s}}} = \left[ {\lambda {\kern 1pt} '\, + (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')(1 - s_{{s3}}^{2}{{{\sin }}^{2}}{{\theta }_{0}}) + \frac{{\beta _{0}^{'}{{\zeta }_{s}}}}{{l_{s}^{2}}}} \right]{\text{/}}{{D}_{2}}s_{{s3}}^{2},$$
$${{h}_{{13}}} = \sin {{\theta }_{0}}\cos {{\theta }_{0}},\quad {{h}_{{14}}} = \sin {{\theta }_{0}}\sqrt {(1 - s_{{43}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{43}}},$$
$${{h}_{{1t}}} = - [\lambda {\kern 1pt} ''\, + (2\mu {\kern 1pt} ''\, + K{\kern 1pt} '')(1 - S_{{t3}}^{{'2}}{{\sin }^{2}}{{\theta }_{0}}) + \beta _{0}^{{''}}\zeta _{t}^{'}]{\text{/}}{{D}_{2}}S_{{t3}}^{{'2}},$$
$${{h}_{{1q}}} = (2\mu {\kern 1pt} ''\, + K{\kern 1pt} '')\sin {{\theta }_{0}}\sqrt {(1 - S_{{q3}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{2}}S_{{q3}}^{'},$$
$${{h}_{{2s}}} = (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')\sin {{\theta }_{0}}\sqrt {(1 - s_{{s3}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{4}}{{s}_{{s3}}},\quad {{h}_{{23}}} = - 1,$$
$${{h}_{{24}}} = - \left[ {\mu {\kern 1pt} '(1 - 2s_{{43}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + K{\kern 1pt} '(1 - s_{{43}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) - \frac{{K{\kern 1pt} '{{\eta }_{4}}}}{{l_{4}^{2}}}} \right]{\text{/}}{{D}_{4}}s_{{43}}^{2},$$
$${{h}_{{2t}}} = (2\mu ''\, + K'')\sin {{\theta }_{0}}\sqrt {(1 - S_{{t3}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{4}}S_{{t3}}^{'},$$
$${{h}_{{2q}}} = [\mu {\kern 1pt} ''(1 - 2S_{{q3}}^{{'2}}{{\sin }^{2}}{{\theta }_{0}}) + K{\kern 1pt} ''(1 - S_{{q3}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) - K{\kern 1pt} ''\eta _{q}^{'}]{\text{/}}{{D}_{4}}S_{{q3}}^{{'2}},$$
$${{h}_{{33}}} = \cos {{\theta }_{0}},\quad {{h}_{{34}}} = {{\eta }_{4}}\sqrt {1 - s_{{43}}^{2}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}{{\eta }_{3}}{{s}_{{43}}},$$
$${{h}_{{37}}} = \gamma {\kern 1pt} ''{\kern 1pt} \eta _{3}^{'}\sqrt {1 - s_{{33}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}s_{{33}}^{'}\gamma {\kern 1pt} '{{\eta }_{3}},\quad {{h}_{{38}}} = \gamma {\kern 1pt} ''{\kern 1pt} \eta _{4}^{'}\sqrt {1 - s_{{43}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}s_{{43}}^{'}\gamma {\kern 1pt} '{{\eta }_{3}},$$
$${{h}_{{4s}}} = \sqrt {(1 - s_{{s3}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{s3}}},\quad {{h}_{{45}}} = Y{\kern 1pt} ''{\kern 1pt} \zeta _{1}^{'}\sqrt {1 - s_{{13}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}Y{\kern 1pt} '{{\zeta }_{1}}s_{{13}}^{'},$$
$${{h}_{{46}}} = Y{\kern 1pt} ''\zeta _{2}^{'}\sqrt {1 - s_{{23}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}Y'{{\zeta }_{1}}s_{{23}}^{'},$$
$${{h}_{{51}}} = \sin {{\theta }_{0}} = {{h}_{{52}}},\quad {{h}_{{53}}} = - \cos {{\theta }_{0}},\quad {{h}_{{54}}} = - \sqrt {(1 - s_{{43}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{43}}},$$
$${{h}_{{55}}} = - \sin {{\theta }_{0}} = {{h}_{{56}}}\quad {{h}_{{5q}}} = - \sqrt {(1 - S_{{q3}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}S_{{q3}}^{'}\quad {{h}_{{6s}}} = - \sqrt {(1 - s_{{s3}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{s3}}},$$
$${{h}_{{63}}} = - \sin {{\theta }_{0}} = {{h}_{{64}}},\quad {{h}_{{6t}}} = - \sqrt {(1 - S_{{t3}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}S_{{t3}}^{'},\quad {{h}_{{67}}} = \sin {{\theta }_{0}} = {{h}_{{68}}},$$
$${{h}_{{73}}} = 1,\quad {{h}_{{74}}} = {{\eta }_{4}}{\text{/}}{{\eta }_{3}},\quad {{h}_{{77}}} = - \eta _{3}^{'}{\text{/}}{{\eta }_{3}},\quad {{h}_{{78}}} = - \eta _{4}^{'}{\text{/}}{{\eta }_{3}},\quad {{h}_{{81}}} = 1,\quad {{h}_{{82}}} = {{\zeta }_{2}}{\text{/}}{{\zeta }_{1}},$$
$${{h}_{{85}}} = - \zeta _{1}^{'}{\text{/}}{{\zeta }_{1}},\quad {{h}_{{86}}} = - \zeta _{2}^{'}{\text{/}}{{\zeta }_{1}},\quad {{W}_{1}} = \sin {{\theta }_{0}}\cos {{\theta }_{0}},\quad {{W}_{2}} = 1,\quad {{W}_{3}} = \cos {{\theta }_{0}},$$
$${{W}_{4}} = 0,\quad {{W}_{5}} = - \cos {{\theta }_{0}},\quad {{W}_{6}} = \sin {{\theta }_{0}},\quad {{W}_{7}} = - 1,\quad {{W}_{8}} = 0,$$

Here now s = 1, 2; \({{s}_{{p3}}} = \frac{{{{S}_{p}}}}{{{{S}_{3}}}},(p = 1,2,4),s_{{r3}}^{'} = \frac{{S_{r}^{'}}}{{{{S}_{3}}}}\), (r = 1, 2, 3, 4) \(S_{{53}}^{'} = s_{{13}}^{'},S_{{63}}^{'} = s_{{23}}^{'}\), \(S_{{73}}^{'} = s_{{33}}^{'}\), \(S_{{83}}^{'} = s_{{43}}^{'}\), \({{D}_{4}} = - \left[ {\mu {\kern 1pt} '{\kern 1pt} \cos 2{{\theta }_{0}} + K{\kern 1pt} '{\kern 1pt} {{{\cos }}^{2}}{{\theta }_{0}} - \frac{{K{\kern 1pt} '{\kern 1pt} {{\eta }_{3}}}}{{l_{3}^{2}}}} \right].\)

$${{E}_{{1,2}}} = Q_{{1,2}}^{2}{{L}_{3}}\left[ {{{\lambda }_{2}} + {{\mu }_{2}} + \frac{{\beta _{0}^{'}{{\zeta }_{{1,2}}}}}{{l_{{1,2}}^{2}}} - \frac{{{{K}_{2}}\zeta _{{1,2}}^{2}}}{{l_{{1,2}}^{2}}}} \right]l_{{1,2}}^{3}{\text{cos}}{{\theta }_{{1,2}}},\quad {{E}_{3}} = - Q_{3}^{2},$$
$${{E}_{4}} = Q_{4}^{2}{{L}_{3}}\left[ {{{\mu }_{2}} + {{K}_{2}} - \frac{{{{\eta }_{4}}}}{{l_{4}^{2}}}\left( {{{\gamma }_{2}}{{\eta }_{4}} + {{K}_{2}}} \right)} \right]l_{4}^{3}\;\cos {{\theta }_{4}},$$
$${{E}_{{5,6}}} = Q_{{5,6}}^{2}{{L}_{3}}\left[ {\lambda _{2}^{'} + \mu _{2}^{'} + \frac{{\beta _{2}^{{''}}\zeta _{2}^{'}}}{{l_{2}^{{'2}}}} - \frac{{K_{2}^{'}\zeta _{2}^{{'2}}}}{{l_{2}^{{'2}}}}} \right]l_{{1,2}}^{{'3}}\cos \theta _{{1,2}}^{'},$$
$${{E}_{{7,8}}} = Q_{{7,8}}^{2}{{L}_{3}}\left[ {(\mu _{2}^{'} + K_{2}^{'} - \frac{{{{\eta }_{{3,4}}}}}{{l_{{3,4}}^{{'2}}}}(\gamma _{2}^{'}\eta _{{3,4}}^{'} + K_{2}^{'})} \right]l_{{3,4}}^{{'3}}\cos \theta _{{3,4}}^{'},\quad {{L}_{3}} = {{\left[ {{{\mu }_{2}} + {{K}_{2}} - \frac{{{{\eta }_{3}}}}{{l_{3}^{2}}}\left( {{{\gamma }_{2}}{{\eta }_{3}} + {{K}_{2}}} \right)} \right]}^{{ - 1}}}.$$

APPENDIX B2

$${{h}_{{1s}}} = \left[ {\lambda {\kern 1pt} '\, + (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')(1 - s_{{s4}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + \frac{{\beta _{0}^{'}{{\zeta }_{s}}}}{{l_{s}^{2}}}} \right]{\text{/}}{{D}_{2}}s_{{s4}}^{2},$$
$${{h}_{{13}}} = \sin {{\theta }_{0}}\sqrt {(1 - s_{{34}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{34}}},\quad {{h}_{{14}}} = \sin {{\theta }_{0}}\cos {{\theta }_{0}},$$
$${{h}_{{1t}}} = - [\lambda {\kern 1pt} ''\, + (2\mu {\kern 1pt} ''\, + K{\kern 1pt} '')(1 - S_{{t4}}^{{'2}}{{\sin }^{2}}{{\theta }_{0}}) + \beta _{0}^{{''}}\zeta _{t}^{'}]{\text{/}}{{D}_{2}}S_{{t4}}^{{'2}},$$
$${{h}_{{1q}}} = (2\mu ''\, + K'')\sin {{\theta }_{0}}\sqrt {(1 - S_{{q4}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{2}}S_{{q4}}^{'},$$
$${{h}_{{2s}}} = (2\mu {\kern 1pt} '\, + K{\kern 1pt} ')\sin {{\theta }_{0}}\sqrt {(1 - s_{{s4}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{3}}{{s}_{{s4}}},\quad {{h}_{{24}}} = - 1,$$
$${{h}_{{23}}} = - \left[ {\mu '{\kern 1pt} (1 - 2s_{{34}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) + K'{\kern 1pt} (1 - s_{{34}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}) - \frac{{K{\kern 1pt} '{\kern 1pt} {{\eta }_{3}}}}{{l_{3}^{2}}}} \right]{\text{/}}{{D}_{3}}s_{{34}}^{2},$$
$${{h}_{{24}}} = - 1,\quad {{h}_{{2t}}} = (2\mu {\kern 1pt} ''\, + K''){\text{sin}}{{\theta }_{0}}\sqrt {(1 - S_{{t4}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{D}_{3}}S_{{t4}}^{'},$$
$${{h}_{{2q}}} = [\mu {\kern 1pt} ''(1 - 2S_{{q4}}^{{'2}}{{\sin }^{2}}{{\theta }_{0}}) + K{\kern 1pt} ''(1 - S_{{q4}}^{{'2}}{{\sin }^{2}}{{\theta }_{0}}) - K{\kern 1pt} ''\eta _{q}^{'}]{\text{/}}{{D}_{3}}S_{{q4}}^{{'2}},$$
$${{h}_{{33}}} = {{\eta }_{3}}\sqrt {1 - s_{{34}}^{2}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}{{\eta }_{4}}{{s}_{{44}}},\quad {{h}_{{34}}} = \cos {{\theta }_{0}},$$
$${{h}_{{37}}} = \gamma {\kern 1pt} ''\eta _{3}^{'}\sqrt {1 - s_{{34}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}s_{{34}}^{'}\gamma {\kern 1pt} '{{\eta }_{4}},\quad {{h}_{{38}}} = \gamma {\kern 1pt} ''\eta _{4}^{'}\sqrt {1 - s_{{44}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}s_{{44}}^{'}\gamma {\kern 1pt} '{{\eta }_{4}},$$
$${{h}_{{4s}}} = \sqrt {(1 - s_{{s4}}^{2}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{s4}}},\quad {{h}_{{45}}} = Y'{\kern 1pt} '{\kern 1pt} \zeta _{1}^{'}\sqrt {1 - s_{{14}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}}} {\text{/}}Y'{\kern 1pt} {{\zeta }_{1}}s_{{14}}^{'},$$
$${{h}_{{46}}} = Y'{\kern 1pt} '{\kern 1pt} \zeta _{2}^{'}\sqrt {1 - s_{{24}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}}} {\text{/}}Y{\kern 1pt} '{\kern 1pt} {{\zeta }_{1}}s_{{24}}^{'},\quad {{h}_{{51}}} = \sin {{\theta }_{0}} = {{h}_{{52}}},\quad {{h}_{{53}}} = - \sqrt {(1 - s_{{34}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{34}}},$$
$${{h}_{{54}}} = - \cos {{\theta }_{0}},\quad {{h}_{{55}}} = - \sin {{\theta }_{0}} = {{h}_{{56}}},\quad {{h}_{{5q}}} = - \sqrt {(1 - S_{{q4}}^{{'2}}{\text{si}}{{{\text{n}}}^{2}}{{\theta }_{0}})} {\text{/}}S_{{q4}}^{'},$$
$${{h}_{{6s}}} = - \sqrt {(1 - s_{{s4}}^{2}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}{{s}_{{s4}}},\quad {{h}_{{63}}} = - {\text{sin}}{{\theta }_{0}} = {{h}_{{64}}},\quad {{h}_{{6t}}} = - \sqrt {(1 - S_{{t4}}^{{'2}}{{{\sin }}^{2}}{{\theta }_{0}})} {\text{/}}S_{{t4}}^{'},$$
$${{h}_{{67}}} = \sin {{\theta }_{0}} = {{h}_{{68}}},\quad {{h}_{{73}}} = {{\eta }_{3}}{\text{/}}{{\eta }_{4}},\quad {{h}_{{74}}} = 1,\quad {{h}_{{77}}} = - \eta _{3}^{'}{\text{/}}{{\eta }_{4}},\quad {{h}_{{78}}} = - \eta _{4}^{'}{\text{/}}{{\eta }_{4}},$$
$${{h}_{{81}}} = 1,\quad {{h}_{{82}}} = {{\zeta }_{2}}{\text{/}}{{\zeta }_{1}}\quad {{h}_{{85}}} = - \zeta _{1}^{'}{\text{/}}{{\zeta }_{1}},\quad {{h}_{{86}}} = - \zeta _{2}^{'}{\text{/}}{{\zeta }_{1}},$$

Here now s = 1, 2; \({{s}_{{p4}}} = \frac{{{{S}_{p}}}}{{{{S}_{4}}}},(p = 1,2,3),s_{{r4}}^{'} = \frac{{S_{r}^{'}}}{{{{S}_{4}}}}\), (r = 1, 2, 3, 4), \(S_{{54}}^{'} = s_{{14}}^{'},S_{{64}}^{'} = s_{{24}}^{'}\), \(S_{{74}}^{'} = s_{{34}}^{'}\), \(S_{{84}}^{'} = s_{{44}}^{'}\), \({{D}_{3}} = - \left[ {\mu {\kern 1pt} '{\kern 1pt} \cos 2{{\theta }_{0}} - K{\kern 1pt} '{\kern 1pt} {{{\cos }}^{2}}{{\theta }_{0}} - \frac{{K{\kern 1pt} '{\kern 1pt} {{\eta }_{4}}}}{{l_{4}^{2}}}} \right],\)

$${{E}_{{1,2}}} = Q_{{1,2}}^{2}{{L}_{4}}\left[ {{{\lambda }_{2}} + {{\mu }_{2}} + \frac{{\beta _{0}^{'}{{\zeta }_{{1,2}}}}}{{l_{{1,2}}^{2}}} - \frac{{{{K}_{2}}\zeta _{{1,2}}^{2}}}{{l_{{1,2}}^{2}}}} \right]l_{{1,2}}^{3}\cos {{\theta }_{{1,2}}},$$
$${{E}_{3}} = Q_{3}^{2}{{L}_{4}}\left[ {{{\mu }_{2}} + {{K}_{2}} - \frac{{{{\eta }_{3}}}}{{l_{3}^{2}}}\left( {{{\gamma }_{2}}{{\eta }_{3}} + {{K}_{2}}} \right)} \right]l_{3}^{3}\cos {{\theta }_{3}},\quad {{E}_{4}} = - Q_{4}^{2},$$
$${{E}_{{5,6}}} = Q_{{5,6}}^{2}{{L}_{4}}\left[ {\lambda _{2}^{'} + \mu _{2}^{'} + \frac{{\beta _{0}^{{''}}\zeta _{2}^{'}}}{{l_{2}^{{'2}}}} - \frac{{K_{2}^{'}\zeta _{2}^{{'2}}}}{{l_{2}^{{'2}}}}} \right]l_{{1,2}}^{{'3}}\cos \theta _{{1,2}}^{'},$$
$${{E}_{{7,8}}} = Q_{{7,8}}^{2}{{L}_{4}}\left[ {(\mu _{2}^{'} + K_{2}^{'} - \frac{{{{\eta }_{{3,4}}}}}{{l_{{3,4}}^{{'2}}}}(\gamma _{2}^{'}\eta _{{3,4}}^{'} + K_{2}^{'})} \right]l_{{3,4}}^{{'3}}\cos \theta _{{3,4}}^{'},\quad {{L}_{4}} = {{\left[ {{{\mu }_{2}} + {{K}_{2}} - \frac{{{{\eta }_{4}}}}{{l_{4}^{2}}}\left( {{{\gamma }_{2}}{{\eta }_{4}} + {{K}_{2}}} \right)} \right]}^{{ - 1}}}.$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahrawat, R.K., Kumar, K., Poonam et al. Reflection and Refraction Phenomenon of Waves At The Interface of Two Non-Local Couple Stress Micropolar Thermoelastic Solid Half-Spaces. Mech. Solids 58, 216–244 (2023). https://doi.org/10.3103/S0025654422600891

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422600891

Keyword:

Navigation