Skip to main content
Log in

Energy Absorption and Gradient of Hybrid Honeycomb Structure with Negative Poisson’s Ratio

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

With the development of aerospace, civil architecture, chemical engineering and biomedicine, more and more metastructures have been applied. In this paper, a hybrid intersect beam honeycomb (HIBH) based on re-entrant hexagonal honeycomb (RHH) is proposed. This structure not only has negative Poisson’s ratio (NPR) effect, but also has good energy absorption characteristics. By exploring the structural parameters, the parameters which can make the energy absorption characteristics of the structure reach the best state are found. Comparing HIBH with its parent structure and other structures, it is found that HIBH has better energy absorption capacity. In addition, the mechanical properties of the structure, including stress-strain characteristics, negative Poisson’s ratio effect and densification strain, are investigated. Finally, the functional gradient is introduced to HIBH by changing its structural form, which further improves the energy absorption characteristics of HIBH. This indicates that the functional gradient can be introduced not only by changing thickness or size, but also by changing structure form. This method provides an idea for the introduction of functional gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. T. J. Liu, “Heat transfer efficiency of metal honeycombs,” Int. J. Heat Mass Transf. 42 (11), 2031–2040 (1998). https://doi.org/10.1016/S0017-9310(98)00306-8

    Article  Google Scholar 

  2. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties (Cambridge Uni. Press, 1997).

    Book  Google Scholar 

  3. J. B. Choi and R. S. Lakes, “Fracture toughness of re-entrant foam materials with a negative Poisson’s ratio: Experiment and analysis,” Int. J. Fracture 80 (1), 73–83 (1996). https://doi.org/10.1007/BF00036481

    Article  Google Scholar 

  4. G. Imbalzano, P. Tran, Tuan D. Ngo, and P.V. Lee, “Three-dimensional modelling of auxetic sandwich panels for localised impact resistance,” J. Sandw. Struct. Mater. 19, 291–316 (2017). https://doi.org/10.1177/1099636215618539

    Article  Google Scholar 

  5. G. Imbalzano, Phuong Tran, Tuan D. Ngo, and Peter V.S. Lee, “A numerical study of auxetic composite panels under blast loadings-ScienceDirect,” Compos. Struct. 135, 339–352 (2016). https://doi.org/10.1016/j.compstruct.2015.09.038

    Article  Google Scholar 

  6. G. Qiang, Ch. Ge, W. Zhuang, et al., “Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading,” Mater. Des. 161, 22–34 (2019). https://doi.org/10.1016/j.matdes.2018.11.013

    Article  Google Scholar 

  7. X. Zhao, Q. Gao, L. Wang, et al., “Dynamic crushing of double-arrowed auxetic structure under impact loading,” Mater. Des. 160, 527–537 (2018). https://doi.org/10.1016/j.matdes.2018.09.041

    Article  Google Scholar 

  8. X. Zhao, G. Zhu, C. Zhou, et al., “Crashworthiness analysis and design of composite tapered tubes under multiple load cases,” Compos. Struct. 222, 110920 (2019). https://doi.org/10.1016/j.compstruct.2019.110920

  9. Q. Zhang, X. Yang, P. Li, et al., “Bioinspired engineering of honeycomb structure - using nature to inspire human innovation,” Prog. Mater. Sci. 74, 332–400 (2015). https://doi.org/10.1016/j.pmatsci.2015.05.001

    Article  Google Scholar 

  10. Y. Fu, T. Yu, and X. Wang, “Study on a chiral structure with tunable Poisson’s ratio,” Mater. 14 (12), 3338 (2021). https://doi.org/10.3390/ma14123338

    Article  Google Scholar 

  11. H. Xi, J. Xu, S. Cen, et al. “Energy absorption characteristics of a novel asymmetric and rotatable re-entrant honeycomb structure,” Acta Mech. Solida Sinica 2, 1–11 (2021). https://doi.org/10.1007/s10338-021-00219-x

    Article  Google Scholar 

  12. T. Wierzbicki, “Crushing analysis of metal honeycombs,” Int. J. Impact Eng. 1 (2), 157–174 (1983). https://doi.org/10.1016/0734-743X(83)90004-0

    Article  Google Scholar 

  13. A. G. Kolpakov, “Determination of the average characteristics of elastic frameworks,” J. Appl. Math. Mech. 49 (6), 739–745 (1985). https://doi.org/10.1016/0021-8928(85)90011-5

    Article  MathSciNet  MATH  Google Scholar 

  14. R. F. Almgren. “An isotropic three-dimensional structure with Poisson’s ratio = -1,” Elasticity 15, 427–430 (1985). https://doi.org/10.1007/BF00042531

    Article  Google Scholar 

  15. G. Cricrì, M. Perrella, and C. Calì, “Honeycomb failure processes under in-plane loading - ScienceDirect,” Compos. Part B: Eng. 45 (1), 1079–1090 (2013). https://doi.org/10.1016/j.compositesb.2012.07.032

    Article  Google Scholar 

  16. K. Zied, M. Osman, and T. Elmahdy, “Enhancement of the in-plane stiffness of the hexagonal re-entrant auxetic honeycomb cores,” Phys. Status Solidi 252 (12), 2685–2692 (2016). https://doi.org/10.1002/pssb.201552164

    Article  Google Scholar 

  17. X. C. Zhang, H. M. Ding, L. Q. An, et al., “Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles,” Adv. Mech. Eng. 7 (2), 679678–679678 (2015). https://doi.org/10.1155/2014/679678

    Article  Google Scholar 

  18. A. Ingrole, A. Hao, and R. Liang, “Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement,” Mater. Des. 117, 72-83 (2017). https://doi.org/10.1016/j.matdes.2016.12.067

    Article  Google Scholar 

  19. T. Mukhopadhyay and S. Adhikari, “Effective in-plane elastic properties of auxetic honeycombs with spatial irregularity,” Mech. Mater. 95, 204–222 (2016). https://doi.org/10.1016/j.mechmat.2016.01.009

    Article  Google Scholar 

  20. L. Boldrin, S. Hummel, F. Scarpa, et al., “Dynamic behaviour of auxetic gradient composite hexagonal honeycombs,” Compos. Struct. 149, 114–124 (2016). https://doi.org/10.1016/j.compstruct.2016.03.044

    Article  Google Scholar 

  21. S. Papka and S. Kyriakides, “Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb,” Acta Mater. 46, 2765–2776 (1998). https://doi.org/10.1016/S1359-6454(97)00453-9

    Article  MATH  ADS  Google Scholar 

  22. D. Ruan, G. Lu, B. Wang, et al. “In-plane dynamic crushing of honeycombs—a finite element study,” Int. J. Impact Eng. 28 (2), 161–182 (2003). https://doi.org/10.1016/S0734-743X(02)00056-8

    Article  Google Scholar 

  23. D. Xiao, Z. Dong, Y. Li, et al., “Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis,” Mater. Sci. Eng. A 758, 163–171 (2019). https://doi.org/10.1016/j.msea.2019.04.116

    Article  Google Scholar 

  24. E. Harkati, N. Daoudi, A. Bezazi, et al. “In-plane elasticity of a multi re-entrant auxetic honeycomb,” Compos. Struct. 180, 130–139 (2017). https://doi.org/10.1016/j.compstruct.2017.08.014

    Article  Google Scholar 

  25. Z. Zhou, J. Zhou, and H. Fan, “Plastic analyses of thin-walled steel honeycombs with re-entrant deformation style,” Mater. Sci. Eng. A 688, 123–133 (2017). https://doi.org/10.1016/j.msea.2017.01.056

    Article  Google Scholar 

  26. J. Zhang, G. Lu, Z. Wang, et al. “Large deformation of an auxetic structure in tension: Experiments and finite element analysis,” Compos. Struct. 184 (JAN.), 92–101 (2018). https://doi.org/10.1016/j.compstruct.2017.09.076

    Article  Google Scholar 

  27. A. Alomarah, D. Ruan, S. Masood, et al, “An investigation of in-plane tensile properties of re-entrant chiral auxetic structure,” Int. J. Adv. Manuf. Tech. 96 (2), 01–17 (2018). https://doi.org/10.1007/s00170-018-1605-x

  28. B. Yu, et al., “Graded square honeycomb as sandwich core for enhanced mechanical performance,” Mater. Des. 89, 642–652 (2016). https://doi.org/10.1016/j.matdes.2015.09.154

    Article  Google Scholar 

  29. S. Hou, Q. Li, S. Long, et al. “Crashworthiness design for foam filled thin-wall structures,” Mater. Des. 30 (6), 2024-2032 (2009). https://doi.org/10.1016/j.matdes.2008.08.044

    Article  Google Scholar 

  30. L. Xia and D.Yang, “Acoustics and vibration analysis of adouble cylindrical shell with lightweight auxetic metamaterial ribs,” J. Vibr. Shock 37 (18), 143–149 (2018). https://doi.org/10.13465/j.cnki.jvs.2018.18.020

    Article  Google Scholar 

  31. D. Xiao, Z. Dong, Y. Li, et al. “Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis,” Materi. Sci. Eng. A 758 (5), 163–171 (2019). https://doi.org/10.1016/j.msea.2019.04.116

    Article  Google Scholar 

  32. Y. Li, “Impact energy absorption of functionally graded chiral honeycomb structures,” Extreme Mech. Lett. 32, 100568 (2019). https://doi.org/10.1016/j.eml.2019.100568

  33. T. Tang, W. Zhang, H. Yin, and H. Wang, “Crushing analysis of thin-walled beams with various section geometries under lateral impact,” Thin-Walled Struct. 102, 43–57 (2016). https://doi.org/10.1016/j.tws.2016.01.017

    Article  Google Scholar 

  34. M. Urban, M. Krahn, G. Hirt, and R. Kopp, “Numerical research and optimization of high-pressure sheet metal forming of tailor rolled blanks,” J. Mater. Process Technol. 177, 360–363 (2006). https://doi.org/10.1016/j.jmatprotec.2006.03.195

    Article  Google Scholar 

  35. X. Zhao, Q. Gao, L. Wang, et al. “Dynamic crushing of double-arrowed auxetic structure under impact loading,” Mater. Des. 160, 527–537 (2018). https://doi.org/10.1016/j.matdes.2018.09.041

    Article  Google Scholar 

  36. J. Meng, Z. Deng, K. Zhang, et al. “Band gap analysis of star-shaped honeycombs with varied Poisson’s ratio,” Smart Mater. Struct. 24 (9), 095011 (2015). https://doi.org/10.1088/0964-1726/24/9/095011

  37. H. Wang, Z. Lu, Z. Yang, et al., “In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions,” Int. J. Mech. Sci. 151, 746–759 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.009

    Article  Google Scholar 

  38. D. Li, J. Yin, L. Dong, et al., “Strong re-entrant cellular structures with negative Poisson’s ratio” J. Mater. Sci. 53 (5), 3493–3499 (2018). https://doi.org/10.1007/s10853-017-1809-8

    Article  ADS  Google Scholar 

  39. X. M. Qiu, J. Zhang, and T. X. Yu, “Collapse of periodic planar lattices under uniaxial compression, part II: Dynamic crushing based on finite element simulation,” Int. J. Impact Eng. 36 (10-11), 1231–1241 (2009). https://doi.org/10.1016/j.ijimpeng.2009.05.010

    Article  Google Scholar 

  40. J. X. Qiao and C. Q. Chen, “Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs,” Int. J. Impact Eng. 83, 47–58 (2015). https://doi.org/10.1016/j.ijimpeng.2015.04.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Gao or Huaiwei Huang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Huang, H. Energy Absorption and Gradient of Hybrid Honeycomb Structure with Negative Poisson’s Ratio. Mech. Solids 57, 1118–1133 (2022). https://doi.org/10.3103/S0025654422050053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654422050053

Keywords:

Navigation