Skip to main content
Log in

Solution of a Mixed Boundary Value Problem of Nonlinear Creep Theory

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In the case of antiplane deformation, a mixed boundary value problem of the nonlinear steady-state creep theory (NSSCT) is considered for the power law of relation between stresses and strain rates for a half-space, when the strain rates are set on one part of its boundary plane while the tangential stresses are equal to zero on the other part of its boundary plane. A closed solution of the problem is constructed. For the comparative analysis, an approximate solution of the problem is obtained. A special case is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kh. Arutyunyan, “The Plane Contact Problem of the Theory of Creep,” Prikl. Mat. Mekh. 23 (5), 901–924 (1959) [J. Appl. Math. Mech. (Engl. Transl.) 23 (5), 1283–1313 (1959)].

    Google Scholar 

  2. N. Kh. Arutyunyan, “Plane Contact Problem of Creeping with Power-Law Strengthening of the Material,” Izv. Akad. Armyan. SSR. Ser. Fiz.-Mat. Nauk 12 (2), 77–105 (1959) [Sov. J. Contemporary Math. Anal. (Engl. Transl.)].

    Google Scholar 

  3. C. Atkinson, “A Note on Crack Problems in Power-Law Elastic Materials and Contact Problems in Nonlinear Creep,” Int. I. Engng Sci. 9 (8), 729–739 (1971).

    Article  Google Scholar 

  4. V. M. Alexandrov and M. A. Sumbatyan, “On a solution of Contact Problem of Nonlinear Steady Creep for Halfplane,” Izv. Akad. Nauk SSSR. Mekh. Tv. Tela, No. 1, 107–113 (1983) [Mech. Sol. (Engl. Transl.)].

  5. V. M. Alexandrov and S. R. Brudnyi, “On the Method of Generalized Superposition in Contact Problem of Antiplane Shear,” Izv. Akad. Nauk SSSR. Mekh. Tv. Tela, No. 4, 71–78 (1986) [Mech. Sol. (Engl. Transl.)].

  6. J. R. Rice, “Mathematical Analysis in the Mechanics of Fracture, Chapter 3 of Fracture: An Advanced Treatise,” in Mathematical Fundamentals, Ed. by H. Liebowitz (Academic Press, New York, 1968), Vol. 2, pp. 191–311.

    Google Scholar 

  7. Y. S. Lee and H. Gong, “Application of Complex Variables and Pseudostress Function to Power-Law Materials and Stress Analisys of Single Rigid Inclusion in Power-Law Materials Subjected to Simple Tension and Pure Shear,” Int. J. Mech. Sci. 29 (10/11), 669–694 (1987).

    Article  Google Scholar 

  8. S. M. Mkhitaryan, “Solution of the First Boundary Value Problem of Nonlinear Theory of Steady-State Creep for a Half-Space in Antiplane Deformation,” Izv. Ross. Akad. Nauk, Mekh. Tv. Tela, No. 6, 58–66 (2012) [Mech. Sol. (Engl. Trans). 47 (6), 646–653 (2012)].

    Article  ADS  Google Scholar 

  9. N. Kh. Arutyunyan and A. V. Manzhirov, Contact Problems in the Theory of Creep (Izd-vo NAN RA, Erevan, 1999) [in Russian].

    Google Scholar 

  10. The Development of Theory of Contact Problems in USSR, Ed. by L. A. Galin (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  11. W. F. Budd, R. C. Warner, T. H. Jacka, et al., “Ice Flow relations for Stress and Strain-Rate Components from Combined Shear and Compression Laboratory Experiments,” J. Glac. 59 (214), 374–392 (2013).

    Article  ADS  Google Scholar 

  12. F. S. Graham, M. Morlighem, R. Gh. Warner, and A. Treverrow, “Implementing an Empirical Scalar Constitutive Relation for Ice with Flow-Induced Polycrystalline Anisotropy in Large-Scale Ice Sheet Models,” Crysph. 12 (3), 1047–1067 (2018).

    Article  Google Scholar 

  13. P. D. Bons, T. Kleiner, M.-G. Llorens, et al., “Greenland Ice Sheet: Higher Nonlinearity of Ice Flow Significantly Reduces Estimated Basal Motion. AGU100. Advancing Earth and Space Science,” Geophys. Res. Let., June 2018, 6542–6547. https://doi.org/10.1029/2018GL078356

    Article  ADS  Google Scholar 

  14. L. M. Kachanov, Theory of Creep (Fizmatgiz, Moscow, 1960) [in Russian].

    Google Scholar 

  15. L. M. Kachanov, Foundations of Fracture Mechanics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  16. N. I. Muskhelishvili, Several Fundamental Problems of Mathematical Theory of Elasticity (Nauka, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  17. I. Ya. Shtaerman, Contact Problem of the Theory of Elasticity (Gostekhizdat, Moscow-Leningrad, 1949) [in Russian].

    Google Scholar 

  18. H. Bateman and A. Erdalyi, Tables of Integral Transforms, Vol. II (McGraw-Hill Book Co., New York, 1954).

    Google Scholar 

  19. G. Ya. Popov, “Some Properties of Classical Polynomials and Their Application to Contact Problems,” Prikl. Mat. Mekh. 27 (5), 821–832 (1963) [J. Appl. Math. Mech. (Engl. Transl.) 27 (5), 1255–1271 (1963)].

    MathSciNet  MATH  Google Scholar 

  20. S. M. Mkhitaryan, “On Certain Spectral Relationships Associated with the Carleman Integral Equation and their Applications to Contact Problems,” Prikl. Mat. Mekh. 47 (2), 219–227, (1983) [J. Appl. Math. Mech. (Engl. Transl.) 47 (2), 180–187 (1983)].

    Google Scholar 

  21. H. Bateman and A. Erdalyi, Higher Transcendental Functions, Vol. 2 (McGraw-Hill Book Co., New York, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mkhitaryan.

Additional information

Russian Text © Author(s), 2019, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2019, No. 2, pp. 126–139.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkhitaryan, S.M. Solution of a Mixed Boundary Value Problem of Nonlinear Creep Theory. Mech. Solids 54, 461–473 (2019). https://doi.org/10.3103/S0025654419020109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654419020109

Keywords

Navigation