Skip to main content
Log in

Application of artificial neural networks for forecasting photovoltaic system parameters

  • Direct Conversion of Solar Energy to Electricity
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

The main element which justifies the installation of a photovoltaic system is the solar energy potential. Various structures of artificial neural networks (ANNs) are used for predicting the sun location, the global solar radiation (GSR) at horizontal and inclined plans. Real meteorological data have been exploited in order to validate the computation results. The ANNs are also carried out to predict the current-voltage characteristics of the photovoltaic module. It can be concluded that the ANNs effectively predict the behavior of photovoltaic system parameters with good a coefficient of determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Namrata, K., Sharma, S.P., and Seksena, S.B.L., Comparison of different models for estimation of diffuse solar radiation in Jharkhand (India) region, Appl. Sol. Energy, 2015, vol. 51, pp. 219–224.

    Article  Google Scholar 

  2. Namrata, K., Sharma, S.P., and Seksena, S.B.L., Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface for Jharkhand (India), Appl. Sol. Energy, 2016, vol. 52, pp. 164–172.

    Article  Google Scholar 

  3. Sumithira, T.R. and Kumar, A.N., Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the State of Tamilnadu (India): A comparative study, Appl. Sol. Energy, 2012, vol. 48, pp. 140–145.

    Article  Google Scholar 

  4. Oudjana, S. Hamid, Hellal, A., and Mahammed I. Hadj, Neural network based photovoltaic electrical forecasting in south Algeria, Appl. Sol. Energy, 2015, vol. 50, pp. 273–277.

    Article  Google Scholar 

  5. Natarajan, M. and Srinivas, T., Study on solar geometry with tracking of collector, Appl. Sol. Energy, 2015, vol. 51, pp. 274–282.

    Article  Google Scholar 

  6. Yadav, A.K. and Chandel, S.S., Comparative analysis of diffused solar radiation models for optimum tilt angle determination for Indian locations, Appl. Sol. Energy, 2014, vol. 50, pp. 53–59.

    Article  Google Scholar 

  7. Mellit, A., Kalogirou, S.A., Hontoria, L., and Shaari, S., Artificial intelligence techniques for sizing photovoltaic systems: A review, Renew. Sustain. Energy Rev., 2009, vol. 13, pp. 406–419.

    Article  Google Scholar 

  8. Kalogirou, S.A., Artificial intelligence for the modeling and control of combustion processes: a review, Progress Energy Combustion Sci., 2003, vol. 29, pp. 515–566.

    Article  Google Scholar 

  9. Kalogirou, S.A., Artificial neural networks in renewable energy systems applications: A review, Renew. Sustain. Energy Rev., 2001, vol. 5, pp. 373–401.

    Article  Google Scholar 

  10. http://www.energy.gov.dz/francais/.

  11. http://re.jrc.ec.euro-pa.eu/pvgis/apps4/pvest.php.

  12. http://eosweb.larc.nasa.gov/sse/(NASA).

  13. Mellit, N.C.A., PSO based Direct Power Control of grid connected photovoltaic system, 4th International Conference on Electrical Engineering (ICEE), Boumerdes, Algeria, 13–15 Dec., 2015.

    Google Scholar 

  14. Narendra, K.S. and Parthasarathy, K., Identification and Control of Dynamical Systems Using Neural Networks, IEEE Trans. Neural Networks, 1990, vol. 1, pp. 4–27.

    Article  Google Scholar 

  15. Anders, U. and Korn, O., Model selection in neural networks, Neural Networks, 1999, vol. 12, pp. 306–323.

    Article  Google Scholar 

  16. Musavi, W.A.M.T., Chan, K.H., Faris, K.B., and Hummels, D.M., On the training of radial basis function classifiers, Neural Networks, 1992, vol. 5, pp. 587–598.

    Article  Google Scholar 

  17. Haralambos Sarimveis, A.A., Tsekouras, G., and Bafas, G., A Fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space, Ind. Eng. Chem. Res., 2002, vol. 41, pp. 751–759.

    Article  MATH  Google Scholar 

  18. Miloudi, L. and Acheli, D., Prediction global solar radiation and modeling photovoltaic module based on artificial neural networks, Control, Engineering and Information Technology (CEIT), 3rd International Conference on IEEE Conference Publications, 2015. http://ieeexplore.ieee.org/abstract/document/7233111/.

    Google Scholar 

  19. Koussa, M., Malek, A., and Haddadi, M., Statistical comparison of monthly mean hourly and daily diffuse and global solar irradiation models and a Simulink program development for various Algerian climates, Energy Convers. Manag., 2009, vol. 50, pp. 1227–1235.

    Article  Google Scholar 

  20. Jiang, Y., Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models, Energy, 2009, vol. 34, pp. 1276–1283.

    Article  Google Scholar 

  21. Stone, R.J., Improved statistical procedure for the evaluation of solar radiation estimation models, Sol. Energy, 1993, vol. 51, pp. 289–291.

    Article  Google Scholar 

  22. Yadav, A.K. and Chandel, S.S., Tilt angle optimization to maximize incident solar radiation: A review, Renew. Sustain. Energy Rev., 2013, vol. 23, pp. 503–513.

    Article  Google Scholar 

  23. Kaushika, N.D., Tomar, R.K., and Kaushik, S.C., Artificial neural network model based on interrelationship of direct, diffuse and global solar radiations, Sol. Energy, 2014, vol. 103, pp. 327–342.

    Article  Google Scholar 

  24. B.Y.H.L. and Jordan, R.C., The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Sol. Energy, 1960, vol. 4, pp. 89–102.

    Google Scholar 

  25. B.Y.H.L. and Jordan, R.C., The long-term fverage performance of flat-plate solar-energy collectors, Sol. Energy, 1963, vol. 7.

    Google Scholar 

  26. Iqbal, M., Optimum collector slope for residential heating in adverse climates, Sol. Energy, 1978, vol. 22.

    Google Scholar 

  27. Miloudi, L., Acheli, D., and Chaib, A., Solar tracking with photovoltaic panel, Energy Procedia, 2013, vol. 42, pp. 103–112. http://www.sciencedirect.com/science/article/pii/S1876610213017128.

    Article  Google Scholar 

  28. Kacira, M., Simsek, M., Babur, Y., and Demirkol, S., Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey, Renew. Energy, 2004, vol. 29, pp. 1265–1275.

    Article  Google Scholar 

  29. Equer, B., Energie solaire photovoltaïque, Ellipses Editions Marketing and UNESCO, 1993, vol. 1.

    Google Scholar 

  30. Safari, A. and Mekhilef, S., Simulation and hardware implementation incremental conductance MPPT with direct control method using cuk converter, IEEE Trans. Ind. Electron., 2011, vol. 58, pp. 1154–1161.

    Article  Google Scholar 

  31. Natsheh, E.M., Natsheh, A.R., and Albarbar, A.-H., An automated tool for solar power systems, Appl. Sol. Energy, 2015, vol. 50, pp. 221–227.

    Article  Google Scholar 

  32. Natsheh, E.M., Power generation of solar PVsystems in Palestine, Appl. Sol. Energy, 2016, vol. 52, pp. 193–196.

    Article  Google Scholar 

  33. da Costa, W.T., Fardin, J.F., Machado Neto, L.d.V.B., and Simonetti, D.S.L., Estimation of irradiance and temperature using photovoltaic modules, Sol. Energy, 2014, vol. 110, pp. 132–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalia Miloudi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloudi, L., Acheli, D. & Kesraoui, M. Application of artificial neural networks for forecasting photovoltaic system parameters. Appl. Sol. Energy 53, 85–91 (2017). https://doi.org/10.3103/S0003701X17020104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X17020104

Navigation