Skip to main content
Log in

Spectral differences between monomers and trimers of photosystem I depend on the interaction between peripheral chlorophylls of neighboring monomers in trimer

  • Optical Spectroscopy of Biological Objects
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The spatial position of the long-wavelength chlorophylls in trimer of pigment-protein complex of photosystem I (PSI) have been determined bymodeling the optical fluorescence absorption and emission spectra for two hypothetical models of PSI trimer. The calculation has been performed using X-ray diffraction data on the spatial position of chlorophylls in PSI monomer; the pigment site energies were taken from the studies of other researchers, while interactions between monomers in trimer are considered as fitting parameters. The interaction energy between the chlorophylls spaced by a distance smaller than 10 Å was estimated based on the concept of extended dipole−dipole interaction. The model under study allowed us to evaluate the influence of the exciton interaction between peripheral pigments on the optical response of PSI trimer. The intensity and shape of stationary fluorescence line turned out to be sensitive to the PSI monomer packing in trimer. A visualization of the density matrix for low-energy exciton states has made it possible to estimate the localization of long-wavelength chlorophylls in PSI trimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shevela, R.Y. Pishchainikov, and L.A. Eichacker, “Govindjee, Oxygenic Photosynthesis in Cyanobacteria,” in Stress Biology of Cyanobacteria: Molecular Mechanism to Cellular Responses (CRC Press, Boca Raton, FL, USA, 2013), pp. 3–40.

    Chapter  Google Scholar 

  2. P. Jordan, P. Fromme, H.T. Witt, O. Klukas,W. Saenger, and N. Krauss, “Three-Dimensional Structure of Cyanobacterial Photosystem I at 2.5A˚ Resolution,” Nature. 411, 909 (2001).

    Article  ADS  Google Scholar 

  3. R. Croce and H. van Amerongen, “Light-Harvesting in Photosystem I,” Photosynthesis Res. 116, 153 (2013).

    Article  Google Scholar 

  4. V. Kompanets, V. Shubin, I. Terekhova, E. Kotova, V. Kozlovsky, V. Novoderezhkin, S. Chekalin, N. Karapetyan, and A. Razjivin, “Red Chlorophyll Excitation Dynamics in Arthrospira Platensis Photosystem I Trimeric Complexes As Studied by Femtosecond Transient Absorption Spectroscopy,” Febs Lett. 588, 3441 (2014).

    Article  Google Scholar 

  5. E. Romero, M. Mozzo, I.H.M. van Stokkum, J.P. Dekker, R. van Grondelle, and R. Croce, “The Origin of the Low-Energy Form of Photosystem I Light-Harvesting Complex Lhca4: Mixing of the Lowest Exciton with a Charge-Transfer State,” Biophys. J. 96, L35 (2009).

    Article  Google Scholar 

  6. R. Croce, A. Chojnicka, T. Morosinotto, J.A. Ihalainen, F. van Mourik, J.P. Dekker, R. Bassi, and R. van Grondelle, “The Low-Energy Forms of Photosystem I Light-Harvesting Complexes: Spectroscopic Properties and Pigment-Pigment Interaction Characteristics,” Biophys. J. 93, 2418 (2007).

    Article  ADS  Google Scholar 

  7. N.V. Karapetyan, A.R. Holzwarth, and M. Rogner, “The Photosystem I Trimer of Cyanobacteria: Molecular Organization, Excitation Dynamics and Physiological Significance,” Febs Lett. 460, 395 (1999).

    Article  Google Scholar 

  8. A. Busch and M. Hippler, “The Structure and Function of Eukaryotic Photosystem I,” Biochim. Et Biophys. Acta-Bioenerg. 1807, 864 (2011).

    Article  Google Scholar 

  9. A.N. Melkozernov, J. Barber, and R.E. Blankenship, “Light Harvesting in Photosystem I Supercomplexes,” Biochemistry. 45, 331 (2006).

    Article  Google Scholar 

  10. A.N. Melkozernov, “Excitation Energy Transfer in Photosystem I from Oxygenic Organisms,” Photosynthesis Res. 70, 129 (2001).

    Article  Google Scholar 

  11. V.V. Shubin, S.D.S. Murthy, N.V. Karapetyan, and P. Mohanty, “Origin of the 77-K Variable Fluorescence at 758-nm in the Cyanobacterium Spirulina-Platensis,” Biochim. Et Biophys. Acta. 1060, 28 (1991).

    Article  Google Scholar 

  12. N.V. Karapetyan, D. Dorra, G. Schweitzer, I.N. Bezsmertnaya, and A.R. Holzwarth, “Fluorescence Spectroscopy of the Longwave Chlorophylls in Trimeric and Monomeric Photosystem I Core Complexes from the Cyanobacterium Spirulina Platensis,” Biochemistry. 36, 13830 (1997).

    Article  Google Scholar 

  13. T. Renger and F. Muh, “Theory of Excitonic Couplings in Dielectric Media Foundation of Poisson-TrEsp Method and Application to Photosystem I Trimers,” Photosynthesis Res. 111, 47 (2012).

    Article  Google Scholar 

  14. J. Adolphs, F. Muh, M.E.A. Madjet, M.S.A. Busch, and T. Renger, “Structure-Based Calculations of Optical Spectra of Photosystem I Suggest an Asymmetric Light-Harvesting Process,” J. Am. Chem. Soc. 132, 3331 (2010).

    Article  Google Scholar 

  15. S. Vaitekonis, G. Trinkunas, and L. Valkunas, “Red Chlorophylls in the Exciton Model of Photosystem I,” Photosynthesis Res. 86, 185 (2005).

    Article  Google Scholar 

  16. B. Bruggemann, K. Sznee, V. Novoderezhkin, R. van Grondelle, and V. May, “From Structure to Dynamics: Modeling Exciton Dynamics in the Photosynthetic Antenna PS1,” J. Phys. Chem. B. 108, 13536 (2004).

    Article  Google Scholar 

  17. M. Yang, A. Damjanovic, H.M. Vaswani, and G.R. Fleming, “Energy Transfer in Photosystem I of Cyanobacteria Synechococcus Elongatus: Model Study with Structure-Based Semi-Empirical Hamiltonian and Experimental Spectral Density,” Biophys. J. 85, 140 (2003).

    Article  Google Scholar 

  18. A. Damjanovic, H.M. Vaswani, P. Fromme, and G.R. Fleming, “Chlorophyll Excitations in Photosystem I of Synechococcus Elongatus,” J. Phys. Chem. B. 106, 10251 (2002).

    Article  Google Scholar 

  19. M. Byrdin, P. Jordan, N. Krauss, P. Fromme, D. Stehlik, and E. Schlodder, “Light Harvesting in Photosystem I: Modeling Based on the 2.5-Å Structure of Photosystem I from Synechococcus Elongatus,” Biophys. J. 83, 433 (2002).

    Article  ADS  Google Scholar 

  20. T. Nagamura and S. Kamata, “A 3-Dimensional Extended Dipole Model for Interaction and Alignment of Chromophores in Monolayer Assemblies,” J. Photochem. Photobiol. A-Chem. 55, 187 (1990).

    Article  Google Scholar 

  21. M.E. Madjet, A. Abdurahman, and T. Renger, “Intermolecular Coulomb Couplings from Ab Initio Electrostatic Potentials: Application to Optical Transitions of Strongly Coupled Pigments in Photosynthetic Antennae and Reaction Centers,” J. Phys. Chem. B. 110, 17268 (2006).

    Article  Google Scholar 

  22. F. Mokvist, F. Mamedov, and S. Styring, “Defining the Far-red Limit of Photosystem I the Primary Charge Separation is Functional to 840 nm,” J. Biol. Chem. 289, 24630 (2014).

    Article  Google Scholar 

  23. M. Brecht, M. Hussels, E. Schlodder, and N.V. Karapetyan, “Red Antenna States of Photosystem I Trimers from Arthrospira Platensis Revealed by Single-Molecule Spectroscopy,” Biochim. Et Biophys. Acta-Bioenerg. 1817, 445 (2012).

    Article  Google Scholar 

  24. E. Schlodder, M. Cetin, M. Byrdin, I.V. Terekhova, and N.V. Karapetyan, “P700(+)-and (3)P700-Induced Quenching of the Fluorescence at 760 nm in Trimeric Photosystem I Complexes from the Cyanobactenium Arthrospira Platensis,” Biochim. Et Biophys. Acta-Bioenerg. 1706, 53 (2005).

    Article  Google Scholar 

  25. M.K. Sener, S. Park, D.Y. Lu, A. Damjanovic, T. Ritz, P. Fromme, and K. Schulten, “Excitation Migration in Trimeric Cyanobacterial Photosystem I,” J. Chem. Phys. 120, 11183 (2004).

    Article  ADS  Google Scholar 

  26. R. Yu. Pishchalnikov and A.P. Razjivin, “From Localized Excited States to Excitons: Changing of Conceptions of Primary Photosynthetic Processes in the Twentieth Century,” Biochemistry (Moscow). 79, 242 (2014).

    Article  Google Scholar 

  27. R. Yu. Pishchalnikov, S.M. Pershin, and A.F. Bunkin, “H2O and D2O Spin-Isomers As a Mediator of the Electron Transfer in the Reaction Center of Purple Bacteria,” Phys. Wave Phenom. 20(3), 184 (2012) [DOI: 10.3103/S1541308X12030041].

    Article  ADS  Google Scholar 

  28. J. Kruip, D. Bald, E. Boekema, and M. Rogner, “Evidence for the Existence of Trimeric and Monomeric Photosystem-I Complexes in Thylakoid Membranes from Cyanobacteria,” Photosynthesis Res. 40, 279 (1994).

    Article  Google Scholar 

  29. S. Mukamel and D. Abramavicius, “Many-Body Approaches for Simulating Coherent Nonlinear Spectroscopies of Electronic and Vibrational Excitons,” Chem. Rev. 104, 2073 (2004).

    Article  Google Scholar 

  30. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

    Google Scholar 

  31. M.N. Yang and G.R. Fleming, “Influence of Phonons on Exciton Transfer Dynamics: Comparison of the Redfield, Forster, and Modified Redfield Equations,” Chem. Phys. 275, 355 (2002).

    Article  ADS  Google Scholar 

  32. A.G. Redfield, The Theory of Relaxation Processes (Academic Press, N.Y.−London, 1965), pp. 1–32.

    Google Scholar 

  33. S. Skandary, A. Konrad, M. Hussels, A.J. Meixner, and M. Brecht, “Orientations between Red Antenna States of Photosystem I Monomers from Thermosynechococcus elongatus Revealed by Single-Molecule Spectroscopy,” J. Phys. Chem. B. 119, 13888 (2015).

    Article  Google Scholar 

  34. N.V. Karapetyan, Y.V. Bolychevtseva, N.P. Yurina, I.V. Terekhova, V.V. Shubin, and M. Brecht, “Long-Wavelength Chlorophylls in Photosystem I of Cyanobacteria: Origin, Localization, and Functions,” Biochemistry (Moscow). 79, 213 (2014).

    Article  Google Scholar 

  35. I.H.M. van Stokkum, T.E. Desquilbet, C.D. van der Weij-de Wit, J.J. Snellenburg, R. van Grondelle, J.C. Thomas, J.P. Dekker, and B. Robert, “Energy Transfer and Trapping in Red-Chlorophyll-Free Photosystem I from Synechococcus WH 7803,” J. Phys. Chem. B. 117, 11176 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Pishchalnikov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishchalnikov, R.Y., Shubin, V.V. & Razjivin, A.P. Spectral differences between monomers and trimers of photosystem I depend on the interaction between peripheral chlorophylls of neighboring monomers in trimer. Phys. Wave Phen. 25, 185–195 (2017). https://doi.org/10.3103/S1541308X17030050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X17030050

Navigation