Skip to main content
Log in

High-Temperature Protective Coatings on Carbon Composites

  • Published:
Russian Engineering Research Aims and scope

Abstract

Research on high-temperature coatings for the protection of heat-proof carbon composites from oxidation and ablation in high-speed high-enthalpy fluxes of oxygen-bearing gas is analyzed. A promising coating architecture with excellent protective properties is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zhang, S., Zhang, Y., Li, A., et al., Carbon composites, in Composite Materials Engineering, Singapore: Springer-Verlag, 2018, vol. 2, pp. 531–617.

    Google Scholar 

  2. Terentieva, V.S., Eremina, A.I., Astapov, A.N., et al., Influence of the architecture and elemental-chemical composition on the structure and properties of carbonaceous composite materials, Compos.: Mech., Comput., Appl., 2011, vol. 2, no. 3, pp. 247–270.

    Google Scholar 

  3. Terent’eva, V.S., Astapov, A.N., and Eremina, A.I., Analysis of prospective antioxidant coatings on heat-resistant carbon-containing composite materials (review), Korroz.: Mater., Zashch., 2014, no. 1, pp. 30–42.

  4. Astapov, A.N. and Terent’eva, V.S., Review of domestic designs in the field of protecting carbonaceous materials against gas corrosion and erosion in high-speed plasma fluxes, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 2, pp. 157–173.

    Article  Google Scholar 

  5. Jin, X., Fan, X., Lu, C., and Wang, T., Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites, J. Eur. Ceram. Soc., 2018, vol. 38, no. 1, pp. 1–28.

    Article  Google Scholar 

  6. Yurishcheva, A.A., Astapov, A.N., Lifanov, I.P., and Rabinskiy, L.N., High temperature coatings for oxidation and erosion protection of heat-resistant carbonaceous materials in high-speed flows, Key Eng. Mater., 2018, vol. 771, pp. 103–117.

    Article  Google Scholar 

  7. Zeng, Y., Wang, D., Xiong, X., et al., Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C, Nat. Commun., 2017, vol. 8, art. ID 15836.

    Article  Google Scholar 

  8. Wang, Y.J., Li, H.J., Fu, Q.G., et al., Ablative property of HfC-based multilayer coating for C/C composites under oxyacetylene torch, Appl. Surf. Sci., 2011, vol. 257, pp. 4760–4763.

    Article  Google Scholar 

  9. Wang, Y., Li, H., Fu, Q., et al., SiC/HfC/SiC ablation resistant coating for carbon/carbon composites, Surf. Coat. Technol., 2012, vol. 206, pp. 3883–3887.

    Article  Google Scholar 

  10. Liu, Q., Zhang, L., Liu, J., et al., The oxidation behavior of SiC–ZrC–SiC-coated C/SiC minicomposites at ultrahigh temperatures, J. Am. Ceram. Soc., 2010, vol. 93, pp. 3990–3992.

    Article  Google Scholar 

  11. Wu, H., Li, H.J., Ma, C., et al., MoSi2-based oxidation protective coatings for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying, J. Eur. Ceram. Soc., 2010, vol. 30, pp. 3267–3270.

    Article  Google Scholar 

  12. Wang, Y.J., Li, H.-J., Fu, Q.-G., et al., Ablation behavior of a TaC coating on SiC coated C/C composites at different temperatures, Ceram. Int., 2013, vol. 39, pp. 359–365.

    Article  Google Scholar 

  13. Wu, H., Li, H.-J., Fu, Q.-G., et al., Microstructures and ablation resistance of ZrC coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying, J. Therm. Spray Technol., 2011, vol. 20, pp. 1286–1291.

    Article  Google Scholar 

  14. Yang, Y., Li, K., Zhao, Z., and Li, H., Ablation resistance of HfC–SiC coating prepared by supersonic atmospheric plasma spraying for SiC-coated C/C composites, Ceram. Int., 2016, vol. 42, pp. 4768–4774.

    Article  Google Scholar 

  15. Yang, Y., Li, K., Liu, G., and Zhao, Z., Ablation mechanism of HfC–HfO2 protective coating for SiC-coated C/C composites in an oxyacetylene torch environment, J. Mater. Sci. Technol., 2017, vol. 33, no. 10, pp. 1195–1202.

    Article  Google Scholar 

  16. Yang, Y., Li, K., Zhao, Z., and Liu, G., HfC–ZrC–SiC multiphase protective coating for SiC-coated C/C composites prepared by supersonic atmospheric plasma spraying, Ceram. Int., 2017, vol. 43, pp. 1495–1503.

    Article  Google Scholar 

  17. Yang, Y., Li, K., Liu, G., et al., Ablation-resistant composite coating of HfC–TaC–SiC for C/C composites deposited by supersonic atmospheric plasma spraying, J. Ceram. Sci. Technol., 2016, vol. 7, no. 4, pp. 379–386.

    Google Scholar 

  18. Simonenko, E.P., New approaches to the synthesis of refractory nanocrystalline carbides and oxides, and production of ultrahigh temperature ceramic materials based on hafnium diboride, Doctoral (Chem.) Dissertation, Moscow: Kurnakov Inst. Gen. Inorg. Chem., Russ. Acad. Sci., 2016.

  19. Jia, Y., Li, H., Fu, Q., et al., Ablation behavior of ZrC–La2O3 coating for SiC-coated carbon/carbon composites under an oxyacetylene torch, Ceram. Int., 2016, vol. 42, pp. 14236–14245.

    Article  Google Scholar 

  20. Wang, S., Li, W., Wang, S., et al., Deposition of SiC/La2Zr2O7 multi-component coating on C/SiC substrate by combining sol-gel process and slurry, Surf. Coat. Technol., 2016, vol. 302, pp. 383–388.

    Article  Google Scholar 

  21. Wang, L., Fu, Q., Liu, N., and Shan, Y., Supersonic plasma sprayed MoSi2–ZrB2 antioxidation coating for SiC–C/C composites, Surf. Eng., 2016, vol. 32, no. 7, pp. 508–513.

    Article  Google Scholar 

  22. Kaiser, A., Lobert, M., and Telle, R., Thermal stability of zircon (ZrSiO4), J. Eur. Ceram. Soc., 2008, vol. 28, pp. 2199–2211.

    Article  Google Scholar 

  23. Jia, Y., Li, H., Yao, X., et al., Effect of LaB6 content on the gas evolution and structure of ZrC coating for carbon/carbon composites during ablation, Ceram. Int., 2017, vol. 43, pp. 3601–3609.

    Article  Google Scholar 

  24. Zhang, Y., Hu, H., Zhang, P., et al., SiC/ZrB2–SiC–ZrC multilayer coating for carbon/carbon composites against ablation, Surf. Coat. Technol., 2016, vol. 300, pp. 1–9.

    Article  Google Scholar 

  25. Yao, X., Li, H., Zhang, Y., and Wang, Y., Oxidation and mechanical properties of SiC/SiC–MoSi2–ZrB2 coating for carbon/carbon composites, J. Mater. Sci. Technol., 2014, vol. 30, pp. 123–127.

    Article  Google Scholar 

  26. Ren, X., Li, H., Fu, Q., et al., TaB2–SiC–Si multiphase oxidation protective coating for SiC-coated carbon/carbon composites, J. Eur. Ceram. Soc., 2013, vol. 33, pp. 2953–2959.

    Article  Google Scholar 

  27. Feng, T., Li, H., Hu, M., et al., Oxidation and ablation resistance of the ZrB2–CrSi2–Si/SiC coating for C/C composites at high temperature, J. Alloys Compd., 2016, vol. 662, pp. 302–307.

    Article  Google Scholar 

  28. Ren, X., Li, H., Fu, Q., et al., Oxidation resistant graded multiphase coating for carbon/carbon composites, Surf. Coat. Technol., 2013, vol. 232, pp. 821–826.

    Article  Google Scholar 

  29. Jia, Y., Li, H., Fu, Q., and Sun, J., A ZrC–SiC/ZrC–LaB6/ZrC multilayer ablation resistance coating for SiC-coated carbon/carbon composites, Surf. Coat. Technol., 2017, vol. 309, pp. 545–553.

    Article  Google Scholar 

  30. Feng, T., Li, H.-J., Shi, X.-H., et al., Oxidation and ablation resistance of ZrB2–SiC–Si/B-modified SiC coating for carbon/carbon composites, Corros. Sci., 2013, vol. 67, pp. 292–297.

    Article  Google Scholar 

  31. Zhou, L., Fu, Q., Huo, C., et al., A novel oxidation protective SiC–ZrB2–ZrSi2 coating with mosaic structure for carbon/carbon composites, Ceram. Int., 2018, vol. 44, no. 12, pp. 14781–14788.

    Article  Google Scholar 

  32. Bogachev, E.A., Timofeev, A.N., Postnikova, M.V., and Zotov, Yu.P., RF Patent 2002722, 1993.

  33. Astapov, A.N. and Terent’eva, V.S., Heat-resistant coatings with higher erosion resistance in hypersonic flows of air plasma, Korroz.: Mater., Zashch., 2017, no. 11, pp. 1–10.

  34. Astapov, A.N. and Rabinskiy, L.N., Investigation of destruction mechanisms for heat-resistant coatings in hypersonic flows of air plasma, Solid State Phenom., 2017, vol. 269, pp. 14–30.

    Article  Google Scholar 

  35. Astapov, A.N., Levashov, E.A., Lifanov, I.P., et al., Heterophase materials in ZrSi2–ZrB2–MoSi2 system: synthesis, kinetics, and oxidation mechanisms, Materialy XXIV Mezhdunarodnogo simpoziuma “Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred” (Proc. XXIV Int. Symp. “Dynamic and Technological Problems in Mechanics of Constructions and Solid Media”), Moscow: TRP, 2018, vol. 1, pp. 7–9.

Download references

Funding

The work was supported by the Russian Ministry of Education and Science, project no. 9.1077.2017/PCh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Lifanov.

Additional information

Translated by Bernard Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lifanov, I.P., Yurishcheva, A.A. & Astapov, A.N. High-Temperature Protective Coatings on Carbon Composites. Russ. Engin. Res. 39, 804–808 (2019). https://doi.org/10.3103/S1068798X19090132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X19090132

Keywords:

Navigation