Skip to main content
Log in

On the simulation of a corona discharge by the similarity theory methods

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A general system of equations for a corona discharge has been derived and reduced to a dimensionless form using the methods of the similarity and dimension theory. Criteria and conditions for the similarity of the processes occurring during a corona discharge have been determined. Formulas for free space-charge density have been derived; the classical structure of the current-voltage characteristic for an arbitrary system of electrodes has been confirmed by different methods: using the theory of similarity, analyzing self-similar solutions, approximating the field distribution, and averaging the equation for the current density with respect to the volume of the interelectrode gap. It has been shown that the quadratic pattern of the current-voltage characteristics of the corona discharge results from the linear dependence of the electric field intensity and the linear threshold dependence of the density of free space carriers on the voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of 16th IEEE International Conference on Dielectric Liquids ICDL, Poitiers, 2008.

  2. Sovremennye problemy elektrofiziki i elektro-gidrodinamiki zhidkostei (Modern Problems of Electrophysics and Electrohydrodynamics of Liquids) (Proc. X Int. Sci. Conf., St. Petersburg, 2012), St. Petersburg: SOLO, 2012.

  3. Basov, A.M., Bykov, V.G., Laptev, A.V., and Fain, V.B., Elektrotekhnologiya (Electrotechnology), Moscow: Agropromizdat, 1985.

    Google Scholar 

  4. Tanasescu, F.T., Bologa, M., Cramariuc, R., Bologa, A., and Cramariuc, B., Electrotehnologii. Protectia mediului, procesarea de materiale si control nedistructiv (Electrotechnology: Environmental Protection, Material Processing, and Nondestructive Testing), Bucharest: AGIR, 2011.

    Google Scholar 

  5. Ming-Wei, Li., Zheng, Hu., Xi-Zhang, Wang., Quing, Wu., and Yi, Chen., Synthesis of carbon nanowires using dc pulsed corona discharge plasma reaction, J. Mater. Sci., 2004, vol. 39, no. 1, pp. 283–284.

    Article  Google Scholar 

  6. Ming-Wei, Li., Zheng, Hu., Xi-Zhang, Wang., Quing, Wu., and Yi, Chen., Low-temperature synthesis of carbon nanotubes using corona discharge plasma reaction at atmosphere pressure, J. Mater. Sci. Lett., 2003, vol. 22, no. 17, pp. 1223–1224.

    Article  Google Scholar 

  7. Salvermoser, M. and Murnick, D.E., Efficient, stable, corona discharge 172 nm xenon excimer light source, J. Appl. Phys., 2003, vol. 94, no. 6, pp. 3722–3731.

    Article  Google Scholar 

  8. Lo, S.-Y., Lobo, J.D., Blumberg, S., Dibble, T.S., Zhang, X., Tsao C-C., and Okumura, M., Generation of energetic He atom beams by a pulsed positive corona discharge, J. Appl. Phys., 1997, vol. 81, no. 9, pp. 5896–5905.

    Article  Google Scholar 

  9. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Nauka, 1992.

    Google Scholar 

  10. Vereshchagin, I.P., Levitov, V.I., Mirzabekyan, G.Z., and Pashin, M., Osnovy elektrodinamiki dispersnykh system (Fundamentals of Electrodynamics of Disperse Systems), Moscow: Energiya, 1974.

    Google Scholar 

  11. Tokarev, A.V., Koronnyi razryad i ego primenenie (Corona Discharge and Its Application), Bishkek: Izd. Kyrg.-Ross. Slavyan. Univ., 2009.

    Google Scholar 

  12. Samusenko, A.V. and Stishkov, Yu.K., Elektrofizicheskie protsessy v gazakh pri vozdeistvii sil’nykh elektricheskikh polei (Electrophysical Processes in Gases under the Action of Strong Electric Fields), St. Petersburg: Izd. S.-Peterb. Gos. Univ., 2011.

    Google Scholar 

  13. Bologa, A. and Paur, H.-R., Corona discharge in gaseous phase—study and applications, Abstracts of the 6th International Conference on Materials Science and Condensed Matter Physics, Chisinau, 2012, p. 258.

    Google Scholar 

  14. Bologa, A., Paur, H.-R., Seifert, H., and Woletz, K., Influence of gas composition, temperature and pressure on corona discharge characteristics, Int. J. Plasma Environ. Sci. Technol., 2011, vol. 5, no. 2, pp. 110–116.

    Google Scholar 

  15. Bologa, A., Paur, H.-R., Seifert, H., and Woletz, K., Abstracts of the European Aerosol Conference, Granada, 2012. http://www.eac2012.com/EAC2012Book/files/694.pdf.

    Google Scholar 

  16. Baldanov, B.B., A source of weakly ionized nonequilibrium plasma based on a pulse-periodic regime of a negative corona discharge in an argon stream, Cand Sci. (Eng.) Dissertation, Ulan-Ude: Vost.-Sibir. Gos. Tekhnol. Univ., 2004.

    Google Scholar 

  17. Karal’nik, V.B., Numerical simulation of unsteady processes in low-current gas discharges, Cand Sci. (Phys.-Math.) Dissertation, Troitsk, 2007.

    Google Scholar 

  18. Dandaron, G.-N and Baldanov, B.B., Features of ignition of a negative corona in an electropositive gas flow, Inzh. Fiz., 2007, no. 3, pp. 30–32.

    Google Scholar 

  19. Eliasson, B. and Kogelschatz, U., Modeling and applications of silent discharge plasmas, IEEE Trans. Plasma Sci., 1991, vol. 19, no. 2, pp. 309–323.

    Article  Google Scholar 

  20. Shuaibov, A.K., On conditions of contraction of a multielectrode corona discharge in He/Ar, Kr, Xe mixtures, Pis’ma Zh. Tekh. Fiz., 1999, vol. 25, no. 17, pp. 90–94.

    Google Scholar 

  21. Sedov, L.I., Metody podobiya i razmernosti v mekhanike (Similarity and Dimension Methods in Mechanics), Moscow: Nauka, 1977.

    Google Scholar 

  22. Townsend, J.S., Die Ionisation der Gase. Handbuch der Radiologie, Stuttgart: Hirzel, 1920, bd. 1.

    Google Scholar 

  23. Loeb, L.B., Fundamental Processes of Electrical Discharge in Gases, Literary Licensing, LLC, 2013.

    Google Scholar 

  24. Kaptsov, N.A., Koronnyi razryad i ego primenenie v elektrofil’trakh (Corona Discharge and Its Application in Electric Filters), Moscow-Leningrad: Gosizdat Tekh.-Teor. Literat., 1947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An. M. Bologa.

Additional information

Original Russian Text © F.P. Grosu, An.M. Bologa, M.K. Bologa, O.V. Motorin, 2014, published in Elektronnaya Obrabotka Materialov, 2014, No. 2, pp. 41–48.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosu, F.P., Bologa, A.M., Bologa, M.K. et al. On the simulation of a corona discharge by the similarity theory methods. Surf. Engin. Appl.Electrochem. 50, 141–148 (2014). https://doi.org/10.3103/S1068375514020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375514020057

Keywords

Navigation