Skip to main content
Log in

A Statistical Model of Winter/Spring Polar Ozone

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Satellite measurements provided by NASA (USA) at http://ozonewatch.gsfc.nasa.gov are used to study the variability and interdependence of polar ozone, polar temperature, and mean zonal wind. A model of winter/spring polar ozone in the Arctic and Antarctic is constructed using data on polar temperatures at 30, 70, and 100 hPa levels and mean zonal wind at 10 and 70 hPa levels in the latitude zone of 45°–75°. The results of the statistical analysis of the 1979–2020 polar ozone calculation errors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. Yu. E. Belikov and Sh. S. Nikolaishvili, “Ozone Holes as a Result of Ozone Destruction on Charged Particles,” Geliogeofizicheskie Issledovaniya, No. 16 (2017) [in Russian].

  2. A. N. Gruzdev, “Estimate of the Effects of Pinatubo Eruption in Stratospheric O3 and NO2 Contents Taking into Account the Variations in the Solar Activity,” Optika Atmosfery i Okeana, No. 6, 27 (2014) [Atmos. Ocean. Opt., 27 (2014)].

  3. A. M. Zvyagintsev and G. M. Kruchenitskii, “Estimates of the Trend in Total Ozone Content over Europe and Variations in the Global Atmospheric Circulation,” Optika Atmosfery i Okeana, No. 9, 10 (1997) [in Russian].

  4. N. S. Ivanova, G. M. Kruchenitskii, I. N. Kuznetsova, V. I. Demin, and V. A. Lapchenko, “Ozone Content over the Russian Federation in the First Quarter of 2020,” Meteorol. Gidrol., No. 6 (2020) [Russ. Meteorol. Hydrol., No. 6, 45 (2020)].

  5. N. S. Ivanova, G. M. Kruchenitskii, I. N. Kuznetsova, and E. A. Lezina, “Ozone Content over the Russian Federation in the Second Quarter of 2020,” Meteorol. Gidrol., No. 8 (2020) [Russ. Meteorol. Hydrol., No. 8, 45 (2020)].

  6. K. Mohanakumar, Stratosphere Troposphere Interactions (FIZMATLIT, Moscow, 2011) [Transl. from English].

    Google Scholar 

  7. S. P. Smyshlyaev, A. I. Pogoreltsev, V. Ya. Galin, and E. A. Drobashevskaya, “Influence of Wave Activity on the Composition of the Polar Stratosphere,” Geomagnetizm i Aeronomiya, No. 1, 56 (2016) [Geomagn. Aeron., No. 1, 56 (2016)].

    Article  Google Scholar 

  8. G. P. Brasscur and C. Granier, “Mount Pinatubo Aerosols, Chlorofluorocarbons, and Ozone Depletion,” Science, 257 (1992).

    Article  Google Scholar 

  9. D. J. Hofmann, T. L. Deshler, P. Aimedieu, W. A. Matthews, P. V. Johnston, Y. Kondo, W. R. Sheldon, G. J. Byrne, and J. R. Benbrook, “Stratospheric Clouds and Ozone Depletion in the Arctic during January 1989,” Nature, No. 6229, 340 (1989).

    Article  Google Scholar 

  10. R. Hossaini, M. P. Chipperfield, S. A. Montzka, A. Rap, S. Dhomse, and W. Feng, “Efficiency of Short-lived Halogens at Influencing Climate through Depletion of Stratospheric Ozone,” Nature Geosci., No. 3, 8 (2015).

    Article  Google Scholar 

  11. P. E. Huck, A. J. McDonald, G. E. Bodeker, and H. Struthers, “Interannual Variability in Antarctic Ozone Depletion Controlled by Planetary Waves and Polar Temperature,” Geophys. Res. Lett., 32 (2005).

  12. A. A. Krivolutsky, A. A. Kuminov, T. Yu. V’yushkova, S. N. Kuznetsov, and I. N. Myagkova, “Changes in the Earth’s Ozonosphere due to Ionization of High-latitude Atmosphere by Solar Protons in October, 2003,” Cosmic Res., No. 6, 42 (2004).

    Article  Google Scholar 

  13. R. W. Portmann, S. Solomon, R. R. Garcia, L. W. Thomason, L. R. Poole, and M. P. McCormick, “Role of Aerosol Variations in Anthropogenic Ozone Depletion in the Polar Regions,” J. Geophys. Res., 101 (1996).

    Article  Google Scholar 

  14. T. G. Shepherd, D. A. Plummer, J. F. Scinocca, M. I. Hegglin, V. E. Fioletov, M. C. Reader, E. Remsberg, T. von Clarmann, and H. J. Wang, “Reconciliation of Halogen-induced Ozone Loss with the Total-column Ozone Record,” Nature Geosci., 7 (2014).

    Article  Google Scholar 

  15. S. Solomon, J. Haskins, D. J. Ivy, and F. Min, “Fundamental Differences between Arctic and Antarctic Ozone Depletion,” in Proceedings of the National Academy of Sciences USA (PNAS), No. 17, 111 (2014).

    Article  Google Scholar 

  16. S. E. Strahan, A. R. Douglass, and P. A. Newman, “The Contributions of Chemistry and Transport to Low Arctic Ozone in March 2011 Derived from Aura MLS Observations,” J. Geophys. Res. Atmos., 118 (2013).

    Google Scholar 

  17. T. Wegner, J.-U. Grooss, M. von Hobe, F. Stroh, O. Suminska-Ebersoldt, C. M. Volk, E. Hosen, V. Mitev, G. Shur, and R. Muller, “Heterogeneous Chlorine Activation on Stratospheric Aerosols and Clouds in Arctic Polar Vortex,” Atmos. Chem. Phys., No. 22, 12 (2012).

    Article  Google Scholar 

  18. V. V. Zuev, N. E. Zueva, and E. S. Savelieva, “The Antarctic Ozone Depletion Caused by Erebus Volcano Gas Emissions,” Atmos. Environ., 122 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Ivanova.

Additional information

Translated from Meteorologiya i Gidrologiya, 2021, No. 5, pp. 16-24. https://doi.org/10.52002/0130-2906-2021-5-16-24.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.S. A Statistical Model of Winter/Spring Polar Ozone. Russ. Meteorol. Hydrol. 46, 295–301 (2021). https://doi.org/10.3103/S1068373921050022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373921050022

Keywords

Navigation