Skip to main content
Log in

Vesicular Arbuscular Mycorrhizal (VAM) fungi- as a major biocontrol agent in modern sustainable agriculture system

  • Microbiology
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

In the present agricultural system, the discriminate use of synthetic chemical fertilizers has predominantly increased throughout the world. Moreover, using excessive use of fertilizers to increase production deteriorates the various soil qualities and pollute water body environment. So using VAM fungi as a biocontrol agent in modern sustainable agriculture, in terms of various parameters like reduction of damage caused by various pathogens, cost effectiveness, energy saving and also as an environment friendly, is a promising perspective in modern agriculture. Also control of plant pathogens in modern agriculture is presently accepted as a key practice in sustainable agriculture because it is based on the management of certain rhizosphere organisms, common components of ecosystems, known to develop antagonistic activities against harmful organisms. Vesicular Arbuscular Mycorrhizal Fungi interact with other microorganisms in the rhizosphere and various other soil constituents. Upon root colonization by VAMF, there occurs profound physiological changes in the host plant. Present agriculture system increasing demand for low-input agriculture and creates greater interest in soil microorganisms which are able to accelerate plant nutrition, health and improve soil quality. The importance of VAM in incresaing food production is far and wide; therefore these can be used in modern sustainable agriculture particulary as biocontrol agent. This review highlights the different interactions of Vesicular Arbuscular Mycorrhizal Fungi (VAMF) and the rule of these interactions in the biological control of plant pathogens. But the commercial use of Vesicular Arbuscular Mycorrhizal Fungi (VAMF) as biocontrol agents is still in its infancy. The main reason is the poor understanding of the mechanisms of the modes of action of VAM fungi in association with the host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alban, R., Guerrero, R., and Toro, M., Interactions between a root-knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica), Am. J. Plant Sci., 2013, vol. 4, pp. 19–23.

    Article  Google Scholar 

  2. Atkinson, S., Berta, G., and Hooker, J.E., Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators, in Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems, Gianinazzi, S. and Schuepp, H., Eds., Basel: ALS, Birkhauser Verlag, 1994, pp. 47–60.

    Google Scholar 

  3. Baum, C., El-Tohamy, W., and Gruda, N, Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review, Sci. Hortic. (Amsterdam), 2015, vol. 187, pp. 131–141.

    Article  Google Scholar 

  4. Elsen, A., Beeterens, R., Swennen, R., and Waele, D, Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology, Biol. Fertil. Soils, 2003, vol. 38, pp. 367–376.

    Article  Google Scholar 

  5. Berg, G., Grosch, R., and Scherwinski, K, Risk assessment for microbial antagonists: Are there effects on non-target organisms?, Gesunde Pflanzen, 2007, vol. 59, pp. 107–117.

    Article  CAS  Google Scholar 

  6. Bodker, L., Kjoller, R., and Rosendahl, S, Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches, Mycorrhiza, 1998, vol. 8, pp. 169–174.

    Article  CAS  Google Scholar 

  7. Brundrett, M., Mycorrhizas in natural ecosystem, in Advances in Ecological Research, Macfayden, B.M. and Fitter, A.H., Eds., London: Academic Press, 1991, pp. 171–173.

    Chapter  Google Scholar 

  8. Calvet, C., Pinochet, J., Hernández-Dorrego, A., Estaún, V., and Camprubi, A, Field micro plot performance of the peach-almond hybrid GF-677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes, Mycorrhiza, 2001, vol. 10, pp. 295–300.

    Article  Google Scholar 

  9. Cameron, D., Neal, A., van Wees, S., and Ton, J., Mycorrhiza-induced resistance: More than the sum of its parts?, Trends Plant Sci., 2013, vol. 18, pp. 539–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carling, D.E., Roncadori, R.W., and Hussey, R.S, Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut, Mycorrhiza, 1996, vol. 6, pp. 9–13.

    Google Scholar 

  11. Dos Anjos, É.C.T., Cavalcante, U.M.T., Gonçalves, D.M.C., Pedrosa, E.M.R., Santos, V.F., and Maia, L.C, Interactions between an arbuscular mycorrhizal fungus (Scutellospora heterogama) and the root-knot nematode (Meloidogyne incognita) on sweet passion fruit (Passiflora alata), Braz. Arch. Biol. Technol., 2010, vol. 53, pp. 801–809.

    Article  Google Scholar 

  12. Cordier, C., Pozo, M.J., Barea, J.M., Gianinazzi, S., and Gianinazzi-Pearson, V, Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus, Mol. Plant Microbe Interact., 1998, vol. 11, pp. 1017–1028.

    Article  CAS  Google Scholar 

  13. Filion, M., St-Arnaud, M., and Fortin, J.A, Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms, New Phytol., 2003, vol. 141, pp. 525–533.

    Article  Google Scholar 

  14. Fritz, M., Jakobsen, I., Lyngkjaer, M.F., Thordal-Christensen, H., and Pons Kühnemann, J, Arbuscular mycorrhiza reduces susceptibility of tomatoto Alternaria solani, Mycorrhiza, 2006, vol. 16, pp. 413–419.

    Article  PubMed  Google Scholar 

  15. Gamalero, E., Pivato, B., Bona, E., Copetta, A., Avidano, L., and Lingua, G, Interactions between a fluorescent pseudomonad, anarbuscular mycorrhizal fungus and a hypo virulent isolate of Rhizoctonia solani affect plant growth and root architecture of tomato plants, Plant Biosyst., 2010, vol. 144, pp. 582–591.

    Google Scholar 

  16. García-Garrido, J.M. and Ocampo, J.A, Regulation of the plant defense response in arbuscular mycorrhizal symbiosis, J. Exp. Bot., 2002, vol. 53, pp. 1377–1386.

    Article  PubMed  Google Scholar 

  17. Gianinazzi, S., Gollotte, A., Binet, M.-N., van Tuinen, D., Redecker, D., and Wipf, D, Agroecology: The key role of arbuscular mycorrhizas in ecosystem services, Mycorrhiza, 2010, vol. 20, pp. 519–530.

    Article  PubMed  Google Scholar 

  18. Güimil, S., Chang, H.-S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E.J., Docquier, M., Descombes, P., Briggs, S.P., and Paszkowski, U, Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization, Proc. Nat. Acad. Sci. U.S.A., 2005, vol. 102, pp. 8066–8070.

    Article  Google Scholar 

  19. Gutjahr, C. and Paszkowski, U, Multiple control levels of root system remodelling in arbuscular mycorrhizal symbiosis, Plant Sci., 2013, vol. 4, p. 204.

    Google Scholar 

  20. Hage-Ahmed, K., Moyses, A., Voglgruber, A., Hadacek, F., and Steinkellner, S, Alterations in root exudation of intercropped tomato mediated by the arbuscula rmycorrhizal fungus Glomus mosseae and the soil borne pathogen Fusarium oxysporum f.sp. lycopersici, J. Phytopathol., 2013, vol. 161, pp. 763–773.

    Article  CAS  Google Scholar 

  21. Hammer, E.C., Pallon, J., Wallander, H., and Olsson, P.A, Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability, FEMS Microbiol. Ecol., 2011, vol. 76, pp. 236–244.

    Article  CAS  PubMed  Google Scholar 

  22. Hause, B., Mrosk, C., Isayenkov, S., and Strack, D, Jasmonates in arbuscular mycorrhizal interactions, Phytochemistry, 2007, vol. 68, pp. 101–110.

    Article  CAS  PubMed  Google Scholar 

  23. Jaizme-Vega, M.C., Tenoury, P., Pinochet, J., and Jaumot, M, Interactions between the root-knot nematode Meloidogyne incognita and Glomus mosseae in banana, Plant Soil, 1997, vol. 196, pp. 27–35.

    Article  CAS  Google Scholar 

  24. Johansson, J.F., Paul, L.R., and Finlay, R.D, Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture, FEMS Microbiol. Ecol., 2004, vol. 48, pp. 1–13.

    Article  CAS  PubMed  Google Scholar 

  25. Jung, S.C., Martinez-Medina, A., Lopez-Raez, J.A., and Pozo, M.J., Mycorrhiza-induced resistance and priming of plant defenses, J. Chem. Ecol., 2012, vol. 38, pp. 651–664.

    Article  CAS  PubMed  Google Scholar 

  26. Karagiannidis, N., Bletsos, F., and Stavropoulos, N, Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and egg plant seedlings, Sci. Hortic., 2002, vol. 94, pp. 145–156.

    CAS  Google Scholar 

  27. Larsen, J. and Bodker, L, Interactions between pea root-inhabiting fungi examined using signature fatty acids, New Phytol., 2003, vol. 149, pp. 487–493.

    Article  Google Scholar 

  28. Lioussanne, L, Review. The role of the arbuscular mycorrhiza-associated rhizo bacteria in the biocontrol of soil borne phytopathogens, Span. J. Agric. Res., 2010, vol. 8, pp. 3–5.

    Article  Google Scholar 

  29. Liu, J., Blaylock, L.A., Endre, G., Cho, J., Town, C.D., Vand, EnboschK.A., and Harrison, M.J, Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis, Plant Cell, 2003, vol. 15, pp. 2106–2123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maeder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., and Niggli, U, Soil fertility and biodiversity in organic farming, Science, 2002, vol. 296, pp. 1694–1697.

    Article  Google Scholar 

  31. Maherali, H. and Klironomos, J, Influence of phylogeny on fungal community assembly and ecosystem functioning, Science, 2007, vol. 316, pp. 1746–1748.

    Article  CAS  PubMed  Google Scholar 

  32. Meyer, J.R. and Linderman, R.G, Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida, Soil Biol. Biochem., 1986, vol. 18, pp. 185–190.

    Article  CAS  Google Scholar 

  33. Parniske, M, Arbuscular mycorrhiza: The mother of plant root endosymbioses, Nat. Rev. Microbiol., 2008, vol. 6, pp. 763–775.

    Article  CAS  PubMed  Google Scholar 

  34. Paszkowski, U, Mutualism and parasitism: The yin and yang of plant symbioses, Curr. Op. Plant Biol., 2006, vol. 9, pp. 364–370.

    Article  Google Scholar 

  35. Pettigrew, W.T., Meredith, W.R., and Young, L.D, Potassium fertilization effects on cotton lint yield, yield components, and reni form nematode populations, Agron. J., 2005, vol. 97, pp. 1245–1251.

    CAS  Google Scholar 

  36. Pieterse, C.M.J., Zamioudis, C., Berendsen, R.L., Weller, D.M., van Wees, S.C.M., and Bakker, P.A.H.M, Induced systemic resistance by beneficial microbes, Annu. Rev. Phytopathol., 2014, vol. 52, pp. 347–375.

    Article  CAS  PubMed  Google Scholar 

  37. Pozo, M.J. and Azcon-Aguilar, C, Unraveling mycorrhiza- induced resistance, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 393–398.

    Article  CAS  PubMed  Google Scholar 

  38. Román, M., Fernández, I., Wyatt, T., Sahrawy, M., Heil, M., and Pozo, M.J, Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi, J. Ecol., 2011, vol. 99, pp. 36–45.

    Article  Google Scholar 

  39. Sieverding, E, Vesicular-Arbuscular Mycorrhiza Management in Tropical Agrosystems, Eschborn, 1991.

    Google Scholar 

  40. Sikes, B.A., Cottenie, K., and Klironomos, J.N, Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas, J. Ecol., 2009, vol. 97, pp. 1274–1280.

    Article  Google Scholar 

  41. Smith, G.S, The role of phosphorous nutrition in interactions of vesicular arbuscular mycorrhizal fungi with soilborne nematodes and fungi, Phytopathology, 1988, vol. 78, pp. 371–374.

    CAS  Google Scholar 

  42. Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, London: Academic Press,2008, 3rd ed.

    Google Scholar 

  43. Smith, S.E., Facelli, E., Pope, S., and Smith, F.A, Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas, Plant Soil, 2010, vol. 326, pp. 3–20.

    Article  CAS  Google Scholar 

  44. Smith, F.A. and Smith, S.E, What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants?, Plant Soil, 2011a, vol. 348, pp. 63–79.

    Article  CAS  Google Scholar 

  45. Smith, S.E. and Smith, F.A, Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales, Annu. Rev. Plant Biol., 2011b, vol. 62, pp. 227–250.

    Article  CAS  PubMed  Google Scholar 

  46. Vierheilig, H., Steinkellner, S. and Khaosaad, T., The biocontrol effect of mycorrhization on soil borne fungal pathogens and the autoregulation of the AMsymbiosis: One mechanism, two effects?, in Mycorrhiza, Varma, A., Ed., Berlin: Springer-Verlag, 2008, pp. 307–320.

    Chapter  Google Scholar 

  47. Toljander, J.F., Lindahl, B.D., Paul, L.R., Elfstr, M.A., and Finlay, R.D, Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure, FEMS Microbiol. Ecol., 2007, vol. 61, pp. 295–304.

    Article  CAS  PubMed  Google Scholar 

  48. Vigo, C., Norman, J.R., and Hooker, J.E, Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci, Plant Pathol., 2000, vol. 49, pp. 509–514.

    Article  Google Scholar 

  49. Vos, C.M., Yang, Y, De Coninck, B., and Cammue, B.P.A., Fungal(-like) biocontrol organisms in tomato disease control, Biol. Control, 2014, vol. 74, pp. 65–81.

    Article  Google Scholar 

  50. Whipps, J.M, Prospects and limitations for mycorrhizas in biocontrol of root pathogens, Can. J. Bot., 2004, vol. 1227, pp. 1198–1227.

    Article  Google Scholar 

  51. Yang, H., Zhang, Q., Dai, Y., Liu, Q., Tang, J., and Bian, X, Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: A meta-analysis, Plant Soil, 2014, vol. 389, pp. 361–374?

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Dar.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, M.H., Reshi, Z.A. Vesicular Arbuscular Mycorrhizal (VAM) fungi- as a major biocontrol agent in modern sustainable agriculture system. Russ. Agricult. Sci. 43, 138–143 (2017). https://doi.org/10.3103/S1068367417020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367417020057

Keywords

Navigation