Skip to main content
Log in

Tribological Performance of Titanium Alloy Ti–6Al–4V via CVD–diamond Coatings

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

In the present study, HFCVD nanocrystalline, microcrystalline and boron-doped nanocrystalline diamond coatings have been deposited on titanium alloy. The effect of boron doping on coefficient of friction and residual stresses of diamond coatings have been studied. The tribological characteristics of the aforementioned three coatings on Ti–6Al–4V substrates were studied using ball on disc micro-tribometer, the thickness of the coatings being 3 μm. The coated Ti–6Al–4V discs were slid against alumina (Al2O3) balls with normal load ranging from 1 to 10 N. The boron-doped NCD coated sample disc was found to possess the lowest average coefficient of friction ~ 0.0804 while the undoped NCD and MCD coated sample discs were found to possess the average coefficients of friction of ~ 0.143 and ~ 0.283, respectively. Raman spectroscopy studies revealed that the residual stresses in boron-doped nanocrystalline coatings were tensile in nature, while the residual stresses in undoped NCD and MCD were found to be of compressive nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X., Chu, P.K., and Ding, C., Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R, 2004, vol. 47, pp. 49–121.

    Article  Google Scholar 

  2. Ganapathy, P., Manivasagam, G., Rajamanickam, A., and Natarajan, A., Wear studies on plasma-sprayed Al2O3 and 8 mole % of Yttrium-stabilized ZrO2 composite coating on biomedical Ti–6Al–4V alloy for orthopedic joint application, Int. J. Nanomedicine, 2015, vol. 10, pp. 213–222.

    CAS  Google Scholar 

  3. Long, M. and Rack, H.J., Titanium alloys in total joint replacement-materials science perspective, Biomaterials, 1998; vol. 19, no. 18, pp. 1621–1639.

    Article  CAS  Google Scholar 

  4. Long, M. and Rack, H.J., Friction and surface behavior of selected titanium alloys during reciprocating-sliding motion, Wear, 2001, vol. 249, nos. 1–2, pp. 158–168.

    CAS  Google Scholar 

  5. Geetha, M., Singh, A.K., Asokamani, R., and Gogia, A.K., Ti based biomaterials, the ultimate choice for orthopaedic implants. A review, Prog. Mater. Sci., 2009, vol. 54, no. 3, pp. 397–425.

    Article  CAS  Google Scholar 

  6. Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films, Phys. Rev., 1988, vol. 38, pp. 4067–4084.

    Article  CAS  Google Scholar 

  7. Johnson, C.E., Weimer, W.A., and Cerio, F.M., Efficiency of methane and acetylene in forming diamond by microwave plasma assisted chemical vapor deposition, J. Mater. Res., 1992, vol. 7, pp. 1427.

    Article  CAS  Google Scholar 

  8. Martin, L.R. and Hill, M.W., A flow-tube study of diamond film growth: methane versus acetylene, J. Mater. Sci. Lett., 1990, vol. 9, p.621.

    Article  CAS  Google Scholar 

  9. Ohtake, N. and Yoshikawa, M., Diamond film preparation by arc discharge plasma jet chemical vapor deposition in the methane atmosphere, J. Electrochem. Soc., 1990, vol. 137, pp.717.

    Article  CAS  Google Scholar 

  10. Niu, C.-M., Tsagaropoulos, G., Baglio, J., Dwilight, K., and Wold, A., Nucleation and growth of diamond on Si, Cu, and Au substrates, J. Solid State Chem., 1991, vol. 91, pp.47.

    Article  CAS  Google Scholar 

  11. Jansen, F., Machonkin, M.A., and Kuhman, D.E., The deposition of diamond films by filament techniques, Vacuum J. Sci. Technol. A, 1990, vol. 8, pp. 3785.

    Article  CAS  Google Scholar 

  12. Fayeulle, S., Blanchard, P., and Vincent, L., Fretting behavior of titanium alloys, Tribol. Transact., 1993, vol. 36, pp.267.

    Article  CAS  Google Scholar 

  13. Budinski, K.G., Wear of Materials, ASME, Conf. Proc.: Orlando, Florida, 1991, p.289.

    Google Scholar 

  14. Lutynski, C., Simansky, G., and MvEvily, A.J., Materials Evaluation under Fretting Conditions, ASTM, Philadelphia, 1982, p. 150

    Book  Google Scholar 

  15. Grogler, T., Franz, A., Klaffke, D., Rosiwal, S.M., and Singer, R.F., Tribological optimization of CVD diamond coated Ti–6Al–4V, Diamond Relat. Mater., 1998, vol. 7, pp. 1342–1347.

    Article  CAS  Google Scholar 

  16. Grogler, T., Plewa, O., Rosiwal, S.M., and Singer, R.F., Microwave-plasma-CVD of diamond coatings onto titanium and titanium alloys, Surf. Coat. Technol., 1998, vol. 98, pp. 1079–1091.

    Article  CAS  Google Scholar 

  17. Haubner, R., Bohr, S., and Lux, B., Comparison of P, N, and B additions during CVD diamond deposition, Diamond Relat. Mater., 1999, vol. 8, pp. 171–178.

    Article  CAS  Google Scholar 

  18. Werner, M. and Lochar, R., Growth and application of undoped and doped diamond films, Reports on Progress in Physics, 1998, vol. 61, pp. 1665–1710.

    Article  CAS  Google Scholar 

  19. Kalss, W., Bohr, S., Haubner, R., Lux, B., Griesser, M., Spicka, H., Grasserbauer, M., and Wurzinger, P., Influence of boron on diamond growth on WC–Co hard-metals, Int. J. Refract. Mater., 1996, vol. 14, pp. 137–144.

    Article  CAS  Google Scholar 

  20. Haubner, R., Comparison of sulfur, boron, nitrogen, and phosphorus additions during low-pressure diamond deposition, Diamond Relat. Mater., 2005, vol. 14, pp. 355–363.

    Article  CAS  Google Scholar 

  21. Zhang, R.J., Lee, S.T., and Lam, Y.W., Characterization of heavily boron-doped diamond films, Ibid., 1996, vol. 5, pp. 1288–1294.

    CAS  Google Scholar 

  22. Wang, Z.L., Lu, C., Li, J.J., and Gu, C.Z., Influence of growth pressure on the electrical properties of boron-doped polycrystalline diamond films, Appl. Surf. Sci., 2009, vol. 255, pp. 9522–9525.

    Article  CAS  Google Scholar 

  23. Wang, L., Lei, X., Shen, B., Sun, F., and Zhang, Zh., Tribological properties and cutting performance of boronand silicon-doped diamond films on Co-cemented tungsten carbide inserts, Diamond Relat. Mater., 2013, vol. 33, pp. 54–62.

    Article  Google Scholar 

  24. Colley, L., Williams, C.G., Johansson, U.D., Newton, M.E., Unwin, P. R., Wilson, N.R., and Macpherson, J.V., Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes, Anal. Chem., 2006, vol. 78, pp. 2539.

    Article  CAS  Google Scholar 

  25. Pleskov, Y.V., New corrosion-resistant electrodes: Synthetic diamond and diamond-based materials. The semiconductor and structure aspects. A review, Prot. Met., 2006, vol. 42, pp.103.

    Article  CAS  Google Scholar 

  26. Suffredini, H.B., Salazar-Banda, G.R., Tanimoto, S.T., Calegaro, M.L., Machado, S.A.S., and Avaca, L.A., AFM studies and electrochemical characterization of boron-doped diamond surfaces modified with metal oxides by the Sol-Gel method, J. Brazilian Chem. Soc., 2006, vol. 17, pp. 257–264.

    Article  CAS  Google Scholar 

  27. Xie, S.T., Shafer, G., Wilson, C.G., Martin, H. B., In vitro adenosine detection with a diamond-based sensor, Diamond Relat. Mater., 2006, vol. 15, pp.225.

    Article  CAS  Google Scholar 

  28. Balducci, A., D’amico, A., Di Natale, C., Marinelli, M., Milani, E., Morgada, M.E., Pucella, G., Rodriguez, G., Tucciarone, A., and Verona-Rinati, G., High performance CVD-diamond-based thermocouple for gas sensing, Sensors Actuat. B: Chem., 2005, vol. 111–112, pp.102.

    Article  Google Scholar 

  29. Ferreira, N.G., Silva, L.L.G., Corat, E.J., and Trava-Airold, V.J. Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems, Diamond Relat. Mater., 2002, vol. 11, pp. 1523.

    Article  CAS  Google Scholar 

  30. Langford, J.I., Wilson, A.J.C., Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 1978, vol. 11, pp.102.

    Article  CAS  Google Scholar 

  31. Hou, Y.Q., Zhuang, D.M., Zhang, G., Wu, M.S., and Liu, J.J., Tribological performances of diamond film and graphite/diamond composite film, Wear, 2002, vol. 253, pp.711.

    Article  CAS  Google Scholar 

  32. Sarangi, S.K., Chattopadhyay, A., and Chattopadhyay, A.K., Effect of pretreatment methods and chamber pressure on morphology, quality, and adhesion of HFCVD diamond coating on cemented carbide inserts, Appl. Surf. Sci., 2008, vol. 254, pp. 3721.

    Article  CAS  Google Scholar 

  33. Silva, F.J.G., Fernandes, A.J.S., Costa, F.M., Baptista, A.P.M., and Pereira, E., A new interlayer approach for CVD diamond coating of steel substrates, Diamond Relat. Mater., 2004, vol. 13, pp.828.

    Article  CAS  Google Scholar 

  34. Seo, S.H., Lee, T.H., and Park, J.S., Roughness control of polycrystalline diamond films grown by bias-enhanced microwave plasma-assisted CVD, Ibid., 2003, vol. 12, pp. 1670.

    CAS  Google Scholar 

  35. May, P.W., Ludlow, W.J., Hannaway, M., Heard, P.J., Smith, J.A., and Rosser, K.N., Raman and conductivity studies of boron-doped microcrystalline diamond, facetted nanocrystalline diamond, and cauliflower diamond films, Chem. Phys. Lett., 2007, vol. 446, pp. 103–108.

    Article  CAS  Google Scholar 

  36. Sun, F., Ma, Yu., Shen, B., Zhang, Zh., and Chen, M., Fabrication and application of nano.microcrystalline composite diamond films on the interior hole surfaces of Co cemented tungsten carbide substrates, Diamond Relat. Mater., 2009, vol. 18, pp. 276–282.

    Article  CAS  Google Scholar 

  37. Polini, R., Traversa, E., Marucci, A., Mattei, G., and Marcheselli, G., A Raman study of diamond film growth on Co-cemented tungsten carbide, J. Electrochem. Soc., 1997, vol. 144, pp. 1371–1375.

    Article  CAS  Google Scholar 

  38. Kulisch, W. and Popov, C., On the growth mechanisms of nanocrystalline diamond films, Phys. Status Solidi A, 2006, vol. 203, pp. 203–219.

    Article  CAS  Google Scholar 

  39. Wang, W.L., Polo, M.C., Sanchez, G., Cifre, J., and Esteve, M., Internal stress and strain in heavily boron-doped diamond films grown by microwave plasma and hot filament chemical vapor deposition, J. Appl. Phys., 1996, vol. 80, pp. 1846–1850.

    Article  CAS  Google Scholar 

  40. Liang, Q., Stanishevsky, A., and Vohra, Y.K., Tribological properties of undoped and boron-doped nanocrystalline diamond films, Thin Solid Films, 2008, vol. 517, pp. 800–804.

    Article  CAS  Google Scholar 

  41. Archard, J.F., Single contacts and multiple encounters, J. Appl. Phys., 1961, vol. 32, pp. 1420–1425.

    Article  Google Scholar 

  42. Yan, Ch.-Sh., Mao, H.-Kw., Li, W., Qian, J., Zhao, Yu., and Hemley, R. J., Ultrahard diamond single crystals from chemical vapor deposition, Phys. Stat. Sol., 2004, vol. 201, pp. R25–R27.

    Article  CAS  Google Scholar 

  43. Li, X.M, Wang, J.D, Chen, D.R, Liu, B, and Liu, F.B., Mechanical properties of diamond thin films characterised by nano-indentation method, J. Chinese Ceram. Soc., 2005, vol. 33, pp. 1539–1543.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Din.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, S.H., Shah, M.A. & Sheikh, N.A. Tribological Performance of Titanium Alloy Ti–6Al–4V via CVD–diamond Coatings. J. Superhard Mater. 40, 26–39 (2018). https://doi.org/10.3103/S1063457618010057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457618010057

Keywords

Navigation