Skip to main content
Log in

Metastable host-guest structure of carbon

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

A family of metastable host-guest structures, the prototype of which is a tetragonal tP9 structure with 9 atoms per cell has been found. It is composed of an 8-atoms tetragonal host, with atoms filling channels oriented along the c-axis. The tP9 structure has a strong analogy with the recently discovered Ba-IV- and Rb-IV-type incommensurate structures. By considering modulations of the structure due to the variations of the host/guest ratio, it has been concluded that the most stable representative of this family of structures has a guest/host ratio of 2/3 and 26 atoms in the unit cell (space group P42/m). This structure is 0.39 eV/atom higher in energy than diamond. We predict it to have band gap 4.1 eV, bulk modulus 384 GPa, and hardness 61–71 GPa. Due to the different local environments of the host and guest atoms, we considered the possibility of replacing carbon atoms in the guest sublattice by Si atoms in the tP9 prototype and study the properties of the resulting compound SiC8, which was found to have remarkably high bulk modulus 361.2 GPa and hardness 46.2 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heimann, R.B., Evsyukov, S.E., and Koga, Y., Carbon allotropes: a suggested classification scheme based on valence orbital hybridization, Carbon, 1997, vol. 35, pp. 1654–1657.

    Article  CAS  Google Scholar 

  2. Iijima, S., Helical microtubules of graphitic carbon, Nature, 1991, vol. 354, pp. 56–58.

    Article  CAS  Google Scholar 

  3. Ekimov, E.A., Sidorov, V.A., Bauer, E.D., et al., Superconductivity in diamond, Ibid., 2004, vol. 428, pp. 542–545.

    Article  CAS  Google Scholar 

  4. Meyer, J.C., Geim, A.K., Katsnelson, M.I., et al., The structure of suspended graphene sheets, Ibid., 2007, vol. 446, pp. 60–63.

    Article  CAS  Google Scholar 

  5. Wang, X., Scandolo, S., and Car, R., Carbon phase diagram from ab initio molecular dynamics, Phys. Rev. Lett., 2005, vol. 95, art. 185701.

  6. Mao, W.L., Mao, H.K., Eng, P.J., et al., Bonding changes in compressed superhard graphite, Science, 2003, vol. 302, pp. 425–427.

    Article  CAS  Google Scholar 

  7. Buchnum, M.J. and Hoffman, R., A hypothetical dense 3,4-connected carbon net and related B2C and CN2 nets built from 1,4-cyclohexadienoid units, J. Am. Chem. Soc., 1994, vol. 116, pp. 11456–11464.

    Article  Google Scholar 

  8. Winkler, B., Pickard, C.J., Milman, V., et al., Prediction of a nanoporous sp2-carbon framework structure by combining graph theory with quantum mechanics, Chem. Phys. Lett., 1999, vol. 312, pp. 536–541.

    CAS  Google Scholar 

  9. Li, Q., Ma, Y., Oganov, A.R., et al., Superhard monoclinic polymorph of carbon, Phys. Rev. Lett., 2009, vol. 102, art. 175506.

  10. Ribeiro, F.J., Tangney, P., Louie, S.G., et al., Structural and electronic properties of carbon in hybrid diamond-graphite structures, Phys. Rev. B, 2005, vol. 72, art. 214109.

  11. Wang, Z.W., Zhao, Y.S., Tait, K., et al., A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes, Proc. Natl. Acad. Sci., 2004, vol. 101, pp. 13699–13702.

    Article  CAS  Google Scholar 

  12. Pickard, C.J. and Needs, R.J., Hypothetical low-energy chiral framework structure of group 14 elements, Phys. Rev. B, 2010, vol. 81, art. 014106.

  13. Umemoto, K., Wentzcovitch, R.M., Saito, S., et al., Body-centered tetragonal C4: A viable sp3 carbon allotrope, Phys. Rev. Lett., 2010, vol. 104, art. 125504.

  14. Hoffmann, R., Hughbanks, T., and Kertesz, M., A hypothetical metallic allotrope of carbon, J. Am. Chem. Soc., 1983, vol. 105, pp. 4831–4832.

    Article  CAS  Google Scholar 

  15. Zhu, Q., Oganov, A.R., Salvado, M., et al., Denser than diamond: ab initio search for superdense carbon allotropes, Phys. Rev. B, 2011, vol. 83, art. 193410.

  16. Lyakhov, A.O. and Oganov, A.R., Evolutionary search for superhard materials applied to forms of carbon and TiO2, Ibid., 2011, vol. 84, art. 092103.

  17. Zhu, Q., Zeng, Q., and Oganov, A.R., Systematic search for low-enthalpy sp3 carbon allotropes using evolutionary metadynamics, Ibid., 2011, vol. 85, art. 201407.

  18. McMahon, M.I. and Nelmes, R.J., High-pressure structures and phase transformations in elemental metals, Chem. Soc. Rev., 2006, vol. 35, pp. 943–963.

    Article  CAS  Google Scholar 

  19. Nelmes, R.J., Allan, D.R., Mcmahonet, M.I., et al., Self-hosting incommensurate structure of barium-IV, Phys. Rev. Lett., 1999, vol. 83, pp. 4081–4084.

    Article  CAS  Google Scholar 

  20. Reed, S.K. and Ackland, G.J., Theoretical and computational study of high-pressure structures in barium, Ibid., 2000, vol. 84, pp. 5580–5584.

    Article  CAS  Google Scholar 

  21. McMahon, M.I., Degtyareva, O., and Nelmes, R.J., Pressure dependent incommensuration in Rb-IV, Ibid., 2001, vol. 87, art. 055501.

  22. Arapan, S., Mao H.K., and Ahuja, R., Prediction of incommensurate crystal structure in Ca at high pressure, Proc. Natl. Acad. Sci., 2008, vol. 52, pp. 20627–20630.

    Article  Google Scholar 

  23. Oganov, A.R., Ma, Y.M., Xu, Y., et al., Exotic behavior and crystal structures of calcium under pressure, Ibid., 2010, vol. 107, pp. 7646–7651.

    Article  CAS  Google Scholar 

  24. McMahon, M.I., Degtyareva, O., and Nelmes, R.J., Ba-IV-type incommensurate crystal structure in group-V metals, Phys. Rev. Lett., 2000, vol. 85, pp. 4896–4899.

    Article  CAS  Google Scholar 

  25. Degtyareva, O., McMahon, M.I., and Nelmes, R.J., Pressure-induced incommensurate-to-incommensurate phase transition in antimony, Phys. Rev. B, 2004, vol. 70, art. 18419.

  26. Fujihisa, H., Akahama, Y., Kawamura, H. et al., Incommensurate structure of phosphorus phase IV, Phys. Rev. Lett., 2007, vol. 98, art. 175501.

  27. Hejny, C. and McMahon, M.I., Large structural modulations in incommensurate Te-III and Se-IV, Ibid., 2003, vol. 91, art. 215502.

  28. McMahon, M.I, Hejny, C., Loveday, J.S., et al., Confirmation of the incommensurate nature of Se-IV at pressures below 70 GPa, Phys. Rev. B, 2004, vol. 70, art. 054101.

  29. Hejny, C., Lundegaard, L.F., Falconi, S., et al., Incommensurate sulfur above 100 GPa, Ibid., 2005, vol. 71, art. 020101.

  30. Pickard, C.J. and Needs, R.J., Aluminum at terapascal pressures, Nat. Mater., 2010, vol. 9, pp. 624–627.

    CAS  Google Scholar 

  31. Oganov, A.R. and Glass, C.W., Crystal structure prediction using ab initio evolutionary techniques: principles and applications, J. Chem. Phys., 2006, vol. 124, art. 244704.

  32. Oganov, A.R., Lyakhov, A.O., and Valle, M., How evolutionary crystal structure prediction works-and why, Acc. Chem. Res., 2011, vol. 44, pp. 227–237.

    Article  CAS  Google Scholar 

  33. Lyakhov, A.O., Oganov, A.R., Stokes, H.T., et al., New developments in evolutionary structure prediction algorithm USPEX, Comp. Phys. Comm., 2013, vol. 184, pp. 1172–1182.

    Article  CAS  Google Scholar 

  34. Hohenberg, P. and Kohn, W., Inhomogeneous electron gas, Phys. Rev. B, 1964, vol. 136, pp. 864–871.

    Article  Google Scholar 

  35. Kohn, W. and Sham, L.J., Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, vol. 140, pp. 1133–1138.

    Article  Google Scholar 

  36. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865.

    Article  CAS  Google Scholar 

  37. Blochl, P.E., Projector augmented-wave method, Phys. Rev. B, 1994, vol. 50, pp. 17953–17978.

    Article  Google Scholar 

  38. Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Ibid., 1999, vol. 59, pp.1758–1775.

    Article  CAS  Google Scholar 

  39. Kresse, G. and Furthmller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Ibid., 1996, vol. 54, pp. 11169–11186.

    Article  CAS  Google Scholar 

  40. Togo, A., Oba, F., and Tanaka, I., First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures, Ibid., 2008, vol. 78, art. 134106.

  41. Heyd, J., Scuseria, G.E., and Ernzerhof, M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys., 2006, vol. 124, art. 219906.

  42. Bader, R.F.W., Atoms in molecules. A quantum theory, Oxford: Oxford University Press, 1990.

    Google Scholar 

  43. Tang, W., Sanville, E., and Henkelman, G., A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Condens. Matter, 2009, vol. 21, art. 084204.

  44. Chen, X.-Q., Niu, H., Li, D., et al., Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 2011, vol. 19, pp. 1275–1281.

    Article  CAS  Google Scholar 

  45. Hill, R., The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. London, 1952, vol. 65, pp. 349–354.

    Article  Google Scholar 

  46. Voigt, W., Lehrbuch der Kristallphysik, Leipzig: Verl. von B.G. Teubner, 1928.

    Google Scholar 

  47. Reuss, A., Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle, Z. Angew. Math. Mech., 1929, vol. 9, pp. 49–58.

    Article  CAS  Google Scholar 

  48. Oganov, A.R, Chen, J., Gatti, C., et al., Ionic high-pressure form of elemental boron, Nature, 2009, vol. 457, pp. 863–867.

    Article  CAS  Google Scholar 

  49. Fahy, S., Chang, K.J, and Louie, S.G., Pressure coefficients of band gaps of diamond, Phys. Rev. B, 1987, vol. 35, pp. 5856–5859.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Zhu.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Q., Feya, O.D., Boulfelfel, S.E. et al. Metastable host-guest structure of carbon. J. Superhard Mater. 36, 246–256 (2014). https://doi.org/10.3103/S1063457614040030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457614040030

Keywords

Navigation