Skip to main content
Log in

Manifestation of the thermal motion of ions in the conductivity spectrum of liquid water

  • Proceedings of the XV All-Russian Seminar “Physics and the Application of Microwaves” (Waves 2015) Named after Prof. A.P. Sukhorukov
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The nonresonant component of the dynamic conductivity spectrum of liquid water in the frequency range of 104–1014 Hz is described by a model of free charged particles participating in thermal motion. The background of IR spectrum is represented by the diffusion response of elementary charges in the form of protons, holes, and H3O+ and OH ions; terahertz loss (1010 Hz) is a response of the same ions in hydrate shells; microwave absorption at frequencies below 107 Hz is represented by the response of the same ions surrounded by the hydrate shell and additionally by the ionic atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Broadband Dielectric Spectroscopy, Kremer, F. and Schonhals, A., Eds., Berlin, Heidelberg: Springer-Verlag, 2003.

  2. Buchner, R. and Hefter, G., Phys. Chem. Chem. Phys., 2009, vol. 11, p. 8984.

    Article  Google Scholar 

  3. Eisenberg, D. and Kauzmann, W., The Structure and Properties of Water, New York, 1969.

    Google Scholar 

  4. Franks, F., Water: a Comprehensive Treatise, New York: Plenum, 1972–1982.

    Google Scholar 

  5. von Hippel, A., IEEE Trans. Electr. Insul., 1988, vol. 23, p. 801.

    Article  Google Scholar 

  6. Bates, R.G., Determination of pH: Theory and Practice, Wiley, 1964.

    Google Scholar 

  7. Bockris, J.O’M. and Reddy, A.K.N., Modern Electrochemistry, New York: Kluwer, 1998.

    Google Scholar 

  8. Rønne, C., Åstrand, P.O., and Keiding, S.R., Phys. Rev. Lett., 1999, vol. 82, p. 2888.

    Article  ADS  Google Scholar 

  9. Yada, H., Nagai, M., and Tanaka, K., Chem. Phys. Lett., 2008, vol. 464, p. 166.

    Article  ADS  Google Scholar 

  10. Agmon, N., J. Phys. Chem., 1996, vol. 100, p. 1072.

    Article  Google Scholar 

  11. Cabane, B. and Vuilleumier, R., C.R. Geosci., 2005, vol. 337, p. 159.

    Article  ADS  Google Scholar 

  12. Ellison, W.J., J. Phys. Chem. Ref. Data, 2007, vol. 36, p. 1.

    Article  ADS  Google Scholar 

  13. Volkov, A.A., Artemov, V.G., and Pronin, A.V., EPL, 2014, vol. 106, p. 46004.

    Article  ADS  Google Scholar 

  14. Light, T.S. and Licht, S.L., Anal. Chem., 1987, vol. 59, p. 2327.

    Article  Google Scholar 

  15. Wang, J., Robinson, C.V., and Edelman, I.S., J. Am. Chem. Soc., 1953, vol. 75, p. 466.

    Article  Google Scholar 

  16. Sivukhin, D.V., Termodinamika i molekulyarnaya fizika (Thermodynamics and Molecular Physics), Moscow: Fizmatlit, 2003.

    Google Scholar 

  17. Samoilov, O.Ya., Struktura vodnykh rastvorov elektrolitov i gidratatsiya ionov (Structure of Electrolytes Water Solutions and Ions Hydration), Moscow: Akad. Nauk SSSR, 1957.

    Google Scholar 

  18. Meiboom, S., J. Chem. Phys., 1961, vol. 34, p. 375.

    Article  ADS  Google Scholar 

  19. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (Kinetical Theory for Liquids), Moscow: Nauka, 1975.

    Google Scholar 

  20. Turov, E.A., Material’nye uravneniya elektrodinamiki (Material Equations for Electrodynamics), Moscow: Nauka, 1983.

    Google Scholar 

  21. Hassanali, A., Prakash, M.K., Eshet, H., et al., Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, p. 20410.

    Article  ADS  Google Scholar 

  22. Marx, D., Chem. Phys. Chem., 2006, vol. 7, p. 1849.

    Google Scholar 

  23. Fernandez-Serra, M.V. and Artacho, E., Phys. Rev. Lett., 2006, vol. 96, p. 016404.

    Article  ADS  Google Scholar 

  24. Artemov, V.G., Volkov, A.A., Sysoev, N.N., et al., Dokl. Akad. Nauk, 2016 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Artemov.

Additional information

Original Russian Text © V.G. Artemov, A.A. Volkov, N.N. Sysoev, A.A. Volkov, Jr., 2015, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2015, Vol. 79, No. 12, pp. 1642–1645.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemov, V.G., Volkov, A.A., Sysoev, N.N. et al. Manifestation of the thermal motion of ions in the conductivity spectrum of liquid water. Bull. Russ. Acad. Sci. Phys. 79, 1435–1438 (2015). https://doi.org/10.3103/S1062873815120047

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873815120047

Keywords

Navigation