Skip to main content
Log in

Basic patterns of the generation of high-angle grain boundaries and the physical and mechanical properties of FeNi alloys upon severe plastic deformation

  • Proceedings of the International Symposium “Physics of Crystals 2013”
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The evolution of the structural parameters of deformation fragments and dynamically recrystallized grains in FeNi alloy are analyzed by means of transmission electron microscopy and back-scattered electron diffraction in a Bridgman camera upon severe plastic deformation with an increase in the number of full turns at a room temperature. It is found that the formation of a great many high-angle grain boundaries in the structure is associated with low-temperature dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glezer, A.M., Usp. Fiz. Nauk, 2012, vol. 182, no. 5, pp. 559–566.

    Article  Google Scholar 

  2. Valiev, R.Z., Estrin, Yu., Horita, Z., et al., J. Organ. Mater., 2006, vol. 58, no. 4, pp. 33–39.

    Google Scholar 

  3. Bridgman, P.W., Studies in Large Plastic Flow and Fracture, New York, etc.: McGraw-Hill, 1952.

    MATH  Google Scholar 

  4. Wu, Y. and Baker, I., Scripta Mater., 1997, vol. 37, pp. 437–441.

    Article  Google Scholar 

  5. Bol’shoi Anglo-Russkii slovar’ (Great English-Russian Dictionary), Moscow: Russkii yazyk, 1988, vol. 2, p. 271.

  6. Segal, V.M., Reznikov, V.I., and Kopylov, V.I., Protsessy plasticheskogo strukturoobrazovaniya metallov (Processes of Plastic Structure Formation for Metals), Minsk: Nauka i tekhnika, 1994.

    Google Scholar 

  7. Glezer, A.M., Bull. Russ. Acad. Sci. Phys., 2007, vol. 71, no. 12, p. 1764.

    Google Scholar 

  8. Golovin, Yu.I., Universal’nye printsipy estestvoznaniya (Universal Principles of Natural Sciences), Tambov: Tambov State Univ., 2002.

    Google Scholar 

  9. Microplasticity, McMahon, C.J., Jr., Ed., New York: Intersci., 1968.

    Google Scholar 

  10. Shtremel’, M.A., Prochnost’ splavov (Strength of Alloys), Moscow: National Univ. of Science and Technology “MISIS”, 1997, part 2.

    Google Scholar 

  11. Valiev, R.Z. and Aleksandrov, I.V., Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei (Nanostructured Materials Produced by Intensive Plastic Deformation), Moscow: Logos, 2000.

    Google Scholar 

  12. Zhilyaev, A.P. and Langdon, T.G., Progr. Mater. Sci., 2008, vol. 53, pp. 893–979.

    Article  Google Scholar 

  13. Tat’yanin, E.V., Kurdyumov, V.G., and Fedorov, V.B., Fiz. Met. Metalloved., 1986, vol. 62, no. 1, pp. 133–137.

    Google Scholar 

  14. Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Great Plastic Deformations and Metals Fracture), Moscow: Metallurgiya, 1986.

    Google Scholar 

  15. Firstov, S.A., Danilenko, N.I., Kopylov, V.I., and Podrezov, Yu.N., Izv. Vyssh. Uchebn. Zaved., Fiz., 2002, no. 3, pp. 41–48.

    Google Scholar 

  16. Bykov, V.M., Likhachev, V.A., and Nikonov, Yu.A., Fiz. Met. Metalloved., 1978, vol. 45, no. 1, pp. 163–169.

    Google Scholar 

  17. Estrin, Y. and Vinogradov, A., Acta Mater., 2013, vol. 61, pp. 782–817.

    Article  Google Scholar 

  18. Glezer, A.M. and Metlov, L.S., Fiz. Tverd. Tela, 2010, vol. 52, no. 6, pp. 1090–1097.

    Google Scholar 

  19. Valiev, R.Z., Ross. Nanotekhnol., 2006, vol. 1, no. 1–2, pp. 208–216.

    Google Scholar 

  20. Pozdnyakov, V.A. and Glezer, A.M., Bull. Russ. Acad. Sci. Phys., 2004, vol. 68, no. 10, p. 1621.

    Google Scholar 

  21. Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: National Univ. of Science and Technology “MISIS”, 2005.

    Google Scholar 

  22. Kassner, M.E. and Barrabes, S.R., Mater. Sci. Eng. A, 2005, vol. 410–411, pp. 152–155.

    Article  Google Scholar 

  23. Sakai, T., Miura, H., Goloborodko, A., and Sitdikov, O., Acta Mater., 2009, vol. 57, pp. 153–162.

    Article  Google Scholar 

  24. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Amsterdam: Elsevier, 2004.

    Google Scholar 

  25. Svirina, Yu.V. and Perevezentsev, V.N., Deform. Razrush. Mater., 2013, no. 7, pp. 2–6.

    Google Scholar 

  26. Glezer, A.M., Tomchuk, A.A., and Rassadina, T.V., Deform. Razrush. Mater., 2014, no. 4, pp. 15–20.

    Google Scholar 

  27. Nalimov, V.V., Teoriya eksperimenta (Experiment Theory), Moscow: Nauka, 1974.

    Google Scholar 

  28. Utyashev, F.Z. and Raab, G.I., Deformatsionnye metody polucheniya i obrabotki ul’tramelkozernistykh materialov (Deformation Methods for Producing and Processing Ultrafine-Grain Materials), Ufa: Gilem, Nauch.-Issl. Kompan. Bashkirsk. Entsikl., 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Glezer.

Additional information

Original Russian Text © A.M. Glezer, V.N. Varyukhin, A.A. Tomchuk, N.A. Maleeva, 2014, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2014, Vol. 78, No. 10, pp. 1273–1281.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glezer, A.M., Varyukhin, V.N., Tomchuk, A.A. et al. Basic patterns of the generation of high-angle grain boundaries and the physical and mechanical properties of FeNi alloys upon severe plastic deformation. Bull. Russ. Acad. Sci. Phys. 78, 1022–1029 (2014). https://doi.org/10.3103/S1062873814100074

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873814100074

Keywords

Navigation