Skip to main content
Log in

Peculiarities of convective motions in the upper solar atmosphere. I

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

A convective field of intensities and velocities between the levels of continuum origination and the temperature minimum is investigated based on spectral observations of iron lines performed near the center of the solar disc using the 70-cm German vacuum tower telescope (VTT) located at del Teide observatory of the Institute of Astrophysics on the Canaries (Tenerife island). Convective elements in the process of their upward and downward motion change with height not only the sign of the relative contrast but also the direction of motion. The height at which this reversal occurs strongly depends on the velocity and contrast of the convective elements which they had at the level of continuous spectrum formation. On average, the reversal of the velocity takes place at the height of 240 ± 130 km, and that of the contrast occur at the height of 200 ± 65 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Stodilka, “Temperature structure of the Actual Solar Granulation,” Kinem. Fiz. Nebes. Tel 19, 407–416 (2003) [Kinem. Phys. Celest. Bodies 19, 334 (2003)].

    ADS  Google Scholar 

  2. M. I. Stodilka, “Structure of Convective Motions in the Solar Photosphere,” Kinem. Fiz. Nebes. Tel 22, 260–270 (2006).

    ADS  Google Scholar 

  3. M. I. Stodilka, O. A. Baran, and S. Z. Malynych, “Peculiarities of the Convection in the Solar Photosphere,” Kinem. Fiz. Nebes. Tel 22, 173–182 (2006) [Kinem. Phys. Celest. Bodies 22, 134 (2006)].

    ADS  Google Scholar 

  4. M. I. Stodilka and O. A. Baran, “Structure of the Solar Photospheric Convection on Subgranulation Scales,” Kinem. Fiz. Nebes. Tel 24, 99–109 (2008) [Kinem. Phys. Celest. Bodies 24, 70 (2008)].

    Google Scholar 

  5. N. G. Shchukina and H. Bueno, “Fe I Lines in Cool Star Spectra: Non-LTE Effects in Atmosphere of Solar Type,” Kinem. Fiz. Nebes. Tel 14, 315–329 (1998).

    ADS  Google Scholar 

  6. M. Asplund, C. Nordlund, R. Trampedach, et al., “Line Formation in Solar Granulation. I. Fe Line Shapes, Shifts and Asymmetries,” Astron. Astrophys. 359, 729–742 (2000).

    ADS  Google Scholar 

  7. C. Bendlin and R. Volkmer, “Results from Two-Dimensional Spectroscopic Observations of Solar Granulation with a Fabry-Perot Interferometer,” Astron. Astrophys. 278, 601–606 (1993).

    ADS  Google Scholar 

  8. O. Espagnet, R. Muller, T. Roudier, et al., “Penetration of the Solar Granulation Into the Photosphere: Height Dependence of Intensity and Velocity Fluctuations,” Astron. Astrophys., Suppl. Ser. 109, 79–108 (1995).

    ADS  Google Scholar 

  9. J. W. Evans and C. P. Catalano, “Observed Oddities in the Lines H, K, b and H Beta,” Solar Phys. 27, 299–302 (1972).

    Article  ADS  Google Scholar 

  10. H. Holweger and F. Kneer, “Solar and Stellar Granulation,” in Proc. of the 3rd Intern. Workshop of the Astronomical Observatory of Capodimonte and the NATO Advanced Research Workshop on Solar and Stellar Granulation, Ed. by R. J. Rutten and G. Severino (Kluwer, Dordrecht, 1989), NATO Adv. Sci. Inst. Ser. C 263, 173 (1989).

    Google Scholar 

  11. K. Janssen and G. Gauzzi, “Dynamics of the Solar Photosphere with IBIS. I. Reversed Intensity Structure in the Mid-Photosphere,” Astron. Astrophys. 450, 365–374 (2006).

    Article  ADS  Google Scholar 

  12. E. V. Khomenko, R. I. Kostik, and N. G. Shchukina, “Five-Minute Oscillations Above Granules and Intergranular Lanes,” Astron. Astrophys. 369, 660–671 (2001).

    Article  ADS  Google Scholar 

  13. D. Kiselman, “High-Spatial-Resolution Solar Observations of Spectral Lines Used for Abundance Analysis,” Astron. Astrophys., Suppl. Ser. 104, 23–77 (1994).

    ADS  Google Scholar 

  14. F. J. Kneer, W. Mattig, A. Nesis, and W. Werner, “Coherence Analysis of Granular Intensity,” Solar Phys. 68, 31–39 (1980).

    Article  ADS  Google Scholar 

  15. R. I. Kostyk and N. G. Shchukina, “Local 5-Min Oscillations Above Solar Granules and Intergranular Space,” Astron. Lett. 25, 678–687 (1999).

    ADS  Google Scholar 

  16. R. I. Kostyk and E. V. Khomenko, “The Effect of Acoustic Waves on Spectral-Line Profiles in the Solar Atmosphere: Observations and Theory,” Astron. Rep. 46, 925–931 (2002).

    Article  ADS  Google Scholar 

  17. R. I. Kostyk and N. G. Shchukina, “Fine Structure of Convective Motions in the Solar Photosphere: Observations and Theory,” Astron. Rep. 48, 769–780 (2004).

    Article  ADS  Google Scholar 

  18. K. Puschmann, M. Vasquez, J. A. Bonet, et al., “Time Series of High Resolution Photospheric Spectra in a Quiet Region of the Sun. I. Analysis of Global and Spatial Variations of Line Parameters,” Astron. Astrophys. 408, 363–378 (2003).

    Article  ADS  Google Scholar 

  19. K. G. Puschmann, B. Ruiz Cobo, M. Vazquez, et al., “Time Series of High Resolution Photospheric Spectra in a Quiet Region of the Sun. II. Analysis of the Variation of Physical Quantities of Granular Structures,” Astron. Astrophys. 441, 1157–1169 (2005).

    Article  ADS  Google Scholar 

  20. G. Salucci, L. Bertello, F. Cavallini, et al., “The Height Dependence of Intensity and Velocity Structures in the Solar Photosphere,” Astron. Astrophys. 285, 322–332 (1994).

    ADS  Google Scholar 

  21. N. Shchukina and J. Bueno Trujillo, “The Iron Line Formation Problem in Three-Dimensional Hydrodynamic Models of Solar-Like Photospheres,” Astrophys. J. 550, 970–990 (2001).

    Article  ADS  Google Scholar 

  22. E. H. Schroeter, D. Soltau, and E. Wiehr, “The German Solar Telescopes at the Observatorio Del Teide,” Vistas Astron. 28, 519–525 (1985).

    Article  ADS  Google Scholar 

  23. H. Socas-Navarro and Bueno J. Trujillo, “Linearization versus Preconditioning: Which Approach is Best for Solving Multilevel Transfer Problems?” Astrophys. J. 490, 383–392 (1997).

    Article  ADS  Google Scholar 

  24. R. Stebbins and P. R. Goode, “Waves in the Solar Photosphere,” Solar Phys. 110, 237–253 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.I. Kostyk, 2010, published in Kinematika i Fizika Nebesnykh Tel, 2010, Vol. 26, No. 5, pp. 26–40.

About this article

Cite this article

Kostyk, R.I. Peculiarities of convective motions in the upper solar atmosphere. I. Kinemat. Phys. Celest. Bodies 26, 233–241 (2010). https://doi.org/10.3103/S0884591310050028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591310050028

Keywords

Navigation