Skip to main content
Log in

Multistage adaptive compensation of active noise interferences using block orthogonalization of signals of compensation channels

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The multistage digital automatic compensators of active noise interferences have been synthesized using the block Gram-Schmidt orthogonalization and LS-algorithm based on the least squares criterion. The specified automatic compensators ensure parallel-serial processing of signals. The application of RLS-algorithm made it possible to obtain a recurrent procedure for calculation of weighting coefficients of automatic compensator modules represented in the form of multiinput weighting adders. Statistical computer simulation was used to analyze the multistage digital automatic compensators based on the RLS-algorithm with simultaneous adaptation of weighting adders of all stages. As a result of parallelization of computational process, the synthesized multistage automatic compensators made it possible to increase the speed of processing (signal sampling frequency) by one order of magnitude and more as compared to that of automatic compensators built on single-stage scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. D. Shirman (ed.), Radioelectronic Systems: Principles of Design and Theory. Reference Book [in Russian], 2nd ed. (Radiotekhnika, Moscow, 2007).

    Google Scholar 

  2. R. P. Bystrov, A. V. Novikov, and V. L. Rumyantsev, “Enhancing the operating speed of spatial filtering of interferences in radars with APAA,” Zhurnal Radioelektroniki, no. 11 (2014). http://jre.cplire.ru/alt/nov14/11/ text.html.

  3. S. Z. Kuz’min, Digital Radiolocation [in Russian] (KViTs, Kyiv, 2000).

    Google Scholar 

  4. M. V. Ratynskii, Adaptation and Superresolution in Antenna Arrays [in Russian] (Radio i Svyaz’, Moscow, 2003).

    Google Scholar 

  5. R. A. Monzingo, R. L. Haupt, and T. W. Miller, Introduction to Adaptive Arrays, 2nd ed. (Scitech Pub. Inc., 2011).

    Book  Google Scholar 

  6. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, and D. V. Atamanskiy, “Adaptive lattice filters. Part I. Theory of lattice structures,” Prikladnaya Radioelektronika 10, no. 4, 381 (2011).

    Google Scholar 

  7. S. Giraudon, US Patent 3876847, IPC 325/367 (8 April 1975).

    Google Scholar 

  8. V. A. Leksachenko and A. A. Shatalov, “Synthesis of multivariate “whitening” filter by using the Gram-Schmidt method,” Radiotekh. Elektron. 21, no. 1, 112 (1976).

    Google Scholar 

  9. K. P. Polov, “Adaptive compensator of interferences,” Radiotekhnika 34, no. 1, 19 (1979).

    Google Scholar 

  10. B. F. Bondarenko and V. P. Prokof’ev, “The use of methods of functional analysis to solve problems of synthesizing space-time signal processing systems,” Radioelectron. Commun. Syst. 25, no. 7, 11 (1982).

    Google Scholar 

  11. C. F. Cowan and P. M. Grant (eds.), Adaptive Filters (Prentice-Hall, 1985).

    MATH  Google Scholar 

  12. V. I. Djigan, Adaptive Filtering of Signals: Theory and Algorithms [in Russian] (Tekhnosfera, Moscow, 2013).

    Google Scholar 

  13. G. A. F. Seber, A. J. Lee, Linear Regression Analysis, 2nd ed. (Wiley, 2003).

    Book  MATH  Google Scholar 

  14. R. W. Hockney and C. R. Jesshope, Parallel Computers (Institute of Physics Publishing, 1983).

    MATH  Google Scholar 

  15. G. Strang, Linear Algebra and its Applications, 4th ed. (Cengage Learning, 2006).

    MATH  Google Scholar 

  16. S. Ya. Zhuk and K. M. Semibalamut, “Two-stage adaptive compensation of active noise interferences with signals orthogonalization of a part of compensation channels,” Visnyk NTUU KPI. Ser. Radiotekhnika. Radioaparatobuduvannya, no. 64, 61 (2016).

    Google Scholar 

  17. V. I. Tikhonov and V. N. Kharisov, Statistical Analysis and Synthesis of Radio Devices and Systems [in Russian] (Radio i Svyaz’, Moscow, 1991).

    Google Scholar 

  18. D. I. Lekhovytskiy, V. P. Ryabukha, G. A. Zhuga, V. N. Lavrent’ev, “Experimental investigations of MTI (moving target indication) systems based on adaptive lattice filters in pulsed radars with burst vobbling of sweep periods,” Prikladnaya Radioelektronika 7, no. 1, 90 (2008).

    Google Scholar 

  19. V. S. Efremov, “Adaptive systems of selection of moving targets in air traffic control radars,” Herald of the Bauman Moscow State Technical University. Ser. Priborostroenie, no. 2, 3 (2007), http://vestnikprib.ru/eng/ catalog/radoiel/hidden/274.html.

    MathSciNet  Google Scholar 

  20. D. I. Lekhovytskiy, D. V. Atamanskiy, D. S. Rachkov, A. V. Semeniaka, “Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 1. Modifications of the spectral estimation algorithms,” Radioelectron. Commun. Syst. 58, no. 12, 523 (2015). DOI: 10.3103/S0735272715120018.

    Article  Google Scholar 

  21. D. I. Lekhovytskiy, D. V. Atamanskiy, D. S. Rachkov, A. V. Semeniaka, “Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 2. Extreme performance,” Radioelectron. Commun. Syst. 59, no. 9, 379 (2016). DOI: 10.3103/S0735272716090016.

    Article  Google Scholar 

  22. D. I. Lekhovytskiy, D. V. Atamanskiy, D. S. Rachkov, A. V. Semeniaka, “Estimation of the energy spectrums of reflections in pulse Doppler weather radars. Part 3. Statistical analysis of the reconstruction techniques of continuous spectrums of the reflections from meteorological objects,” Radioelectron. Commun. Syst. 60, no. 2, 47 (2017). DOI: 10.3103/S0735272717020017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Zhuk.

Additional information

ORCID: 0000-0002-0046-8450

ORCID: 0000-0002-6171-0036

Original Russian Text © S.Ya. Zhuk, K.M. Semibalamut, S.N. Litvintsev, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2017, Vol. 60, No. 6, pp. 311–326.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuk, S.Y., Semibalamut, K.M. & Litvintsev, S.N. Multistage adaptive compensation of active noise interferences using block orthogonalization of signals of compensation channels. Radioelectron.Commun.Syst. 60, 243–257 (2017). https://doi.org/10.3103/S0735272717060012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272717060012

Navigation