Skip to main content
Log in

Molecular dynamics study of the ionic environment and electrical characteristics of nucleosomes

  • Molecular Biology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Foundations of nucleosome structure and formation have been investigated in the present work using the molecular modeling approach. Formation of compact nucleosomes by histone proteins and parts of DNA macromolecules enables DNA packing in the cell nucleus and plays an important role in the regulation of transcription and gene expression. Nucleosome assembly and functioning depend on the ionic environment and electrical characteristics of the medium to a great extent. Maps of monovalent ion distribution in the DNA-histone system have been analyzed in the present work and the preferred location of the ions has been determined. A method for the calculation of distribution of certain physical parameter values in the computational cell incorporating the drifting macromolecule has been put forward. Distribution of the electrostatic potential around a nucleosome has been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W., and Richmond, T.J., Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 angstrom resolution, J. Mol. Biol., 2002, vol. 319, no. 5, pp. 1097–1113.

    Article  PubMed  CAS  Google Scholar 

  2. Vasudevan, D., Chua, E.Y.D., and Davey, C.A., Crystal structures of nucleosome core particles containing the '601' strong positioning sequence, J. Mol. Biol., 2010, vol. 403, no. 1, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  3. Thiriet, C., Replication-independent core histone dynamics at transcriptionally active loci in vivo, Gene Dev., 2005, vol. 19, no. 6, pp. 677–682.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Studitsky, V.M., Clark, D.J., and Felsenfeld, G., Overcoming a nucleosomal barrier to transcription, Cell, 1995, vol. 83, no. 1, pp. 19–27.

    Article  PubMed  CAS  Google Scholar 

  5. Andrews, A.J. and Luger, K., A coupled equilibrium approach to study nucleosome thermodynamics, Methods Enzymol., 2011, vol. 488, pp. 265–285.

    Article  PubMed  CAS  Google Scholar 

  6. Banks, D.D. and Gloss, L.M., Equilibrium folding of the core histones: the h3–h4 tetramer is less stable than the h2a–h2b dimer, Biochemistry, 2003, vol. 42, no. 22, pp. 6827–6839.

    Article  PubMed  CAS  Google Scholar 

  7. Davey, C.A. and Richmond, T.J., DNA-dependent divalent cation binding in the nucleosome core particle, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no. 17, pp. 11169–11174.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J.L., Dror, R.J., and Shaw, D.E., Improved sidechain torsion potentials for the Amber ff99sb protein force field, Proteins, 2010, vol. 78, no. 8, pp. 1950–1958.

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., and Lindahl, E., Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 2013, vol. 29, no. 7, pp. 845–854.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Humphrey, W., Dalke, A., and Schulten, K., Vmd: visual molecular dynamics, J. Mol. Graphics Modell., 1996, vol. 14, no. 1, pp. 33–38.

    Article  CAS  Google Scholar 

  11. Aksimentiev, A. and Schulten, K., Imaging alphahemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map, Biophys. J., 2005, vol. 88, no. 6, pp. 3745–3761.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Savelyev, A. and Papoian, G.A., Electrostatic, steric, and hydration interaction favor Na+ condensation around DNA compared with K+, J. Am. Chem. Soc., 2006, vol. 128, no. 45, pp. 14506–14518.

    Article  PubMed  CAS  Google Scholar 

  13. Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V., in Contemporary High Performance Computing: from Petascale Toward Exascale, Jeffery, S.V., Ed., Boca Raton, FL: CRC Press, 2013, pp. 283–307.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Armeev.

Additional information

Original Russian Text © G.A. Armeev, K.V. Shaitan, A.K. Shaitan, 2015, published in Vestnik Moskovskogo Universiteta. Biologiya, 2015, No. 4, pp. 24–28.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armeev, G.A., Shaitan, K.V. & Shaitan, A.K. Molecular dynamics study of the ionic environment and electrical characteristics of nucleosomes. Moscow Univ. Biol.Sci. Bull. 70, 173–176 (2015). https://doi.org/10.3103/S0096392515040033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392515040033

Keywords

Navigation