Skip to main content
Log in

Evolution of the term “cellular senescence” and its impact on the current cytogerontological research

  • Gerontology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

The term “cellular/cell senescence” was first introduced by Leonard Hayflick to describe the “age-related” changes in normal eukaryotic cells during aging in vitro, i.e., over the exhaustion of their mitotic potential. In the “classic” variant, it was assumed that cells “grow old” with the help of some internal mechanism, which leads to accumulation of various macromolecular defects (DNA damage in the first place). Currently, as a rule, “cellular senescence” means accumulation/appearance of particular “biomarkers of aging” in cells (they are most often transformed cells that do not demonstrate any replicative senescence) under the influence of various external factors (oxidative stress, H2O2, mitomycin C, ethanol, ionizing radiation, doxorubicin, etc.) that cause DNA damage. This phenomenon has been called DDR (DNA Damage Response). Among the said biomarkers, there are senescence-associated beta-galactosidase activity, expression of p53 and p21 proteins as well as of proteins involved in the regulation of inflammation, such as IL-6 or IL-8, activation of oncogenes, etc. Thus, “aging/senescence” of cells does not occur simply by itself—it takes place because of the influence of DNA-damaging agents. This approach, in my opinion, despite being very important to define a strategy to fight cancer, distracts us, yet again, from the study of the real mechanisms of aging. It should be emphasized that the “stationary phase aging” model developed in my laboratory also allows registering the occurrence of certain biomarkers of aging in cultured cells, but in this case they arise due to the restriction of their proliferation by contact inhibition, i.e., due to a rather physiological impact, which does not cause any damage to cells by itself (the situation is similar to what we observe in a whole multicellular organism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weismann, A., Die Kontinuitat des Keimplasmas als Grundlage einer Theorie der Vererbung, Jena: G. Fisher Ferlag, 1885.

    Google Scholar 

  2. Weismann, A., Das Keimplasma. Eine Theorie der Vererbung, Jena: G. Fisher Ferlag, 1892.

    Google Scholar 

  3. Hayflick, L., Progress in cytogerontology, Mech. Ageing Dev., 1979, vol. 9, no. 5–6, pp. 393–408.

    Article  CAS  PubMed  Google Scholar 

  4. Hayflick, L., How and Why We Age, New York: Ballantine Books, 1996.

    Google Scholar 

  5. Kirkwood, T.B. and Cremer, T., Cytogerontology since 1881: a reappraisal of August Weismann and a review of modern progress, Hum. Genet., 1982, vol. 60, no. 2, pp. 101–121.

    Article  CAS  PubMed  Google Scholar 

  6. Khokhlov, A.N., Results and perspectives of cytogerontologic studies in modern time, Tsitologiia, 2002, vol. 44, no. 12, pp. 1143–1148.

    CAS  PubMed  Google Scholar 

  7. Khokhlov, A.N., Gerontological studies on cell cultures: from organism to cell and back, Probl. Staren. Dolgolet., 2008, vol. 17, no. 4, pp. 451–456.

    Google Scholar 

  8. Khokhlov, A.N., Testing geroprotectors in cell culture experiments: pros and cons, Probl. Staren. Dolgolet., 2009, vol. 18, no. 1, pp. 32–36.

    Google Scholar 

  9. Khokhlov, A.N., The cell kinetics model for determination of organism biological age and for geroprotectors or geropromoters studies, in Biomarkers of Aging: Expression and Regulation. Proceeding, Licastro, F. and Caldarera, C.M., Eds., Bologna: CLUEB, 1992, pp. 209–216.

    Google Scholar 

  10. Khokhlov, A.N., Cytogerontology at the beginning of the third millennium: from “correlative” to “gist” models, Russ. J. Dev. Biol., 2003, vol. 34, no. 5, pp. 321–326.

    Article  Google Scholar 

  11. Alinkina, E.S., Vorobyova, A.K., Misharina, T.A., Fatkullina, L.D., Burlakova, E.B., and Khokhlov, A.N., Cytogerontological studies of biological activity of oregano essential oil, Moscow Univ. Biol. Sci. Bull., 2012, vol. 67, no. 2, pp. 52–57.

    Article  Google Scholar 

  12. Carrel, A., Artificial activation of the growth in vitro of connective tissue, J. Exp. Med., 1912, vol. 17, no. 1, pp. 14–19.

    Article  Google Scholar 

  13. Carrel, A., Contributions to the study of the mechanism of the growth of connective tissue, J. Exp. Med., 1913, vol. 18, no. 3, pp. 287–289.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Swim, H.E. and Parker, R.F., Culture characteristics of human fibroblasts propagated serially, Amer. J. Hyg., 1957, vol. 66, no. 2, pp. 235–243.

    CAS  PubMed  Google Scholar 

  15. Hayflick, L. and Moorhead, P.S., The serial cultivation of human diploid cell strains, Exp. Cell Res., 1961, vol. 25, no. 3, pp. 585–621.

    Article  CAS  PubMed  Google Scholar 

  16. Hayflick, L., The limited in vitro lifetime of human diploid cell strains, Exp. Cell Res., 1965, vol. 37, no. 3, pp. 614–636.

    Article  CAS  PubMed  Google Scholar 

  17. Rattan, S.I.S., “Just a fellow who did his job…,” an interview with Leonard Hayflick, Biogerontology, 2000, no. 1, pp. 79–87.

    Google Scholar 

  18. Olovnikov, A.M., Principle of marginotomy in the template synthesis of polynucleotides, Dokl. Akad. Nauk SSSR, 1971, vol. 201, no. 6, pp. 1496–1499.

    CAS  PubMed  Google Scholar 

  19. Khokhlov, A.N., From Carrel to Hayflick and back, or what we got from the 100-year cytogerontological studies, Biophysics, 2010, vol. 55, no. 5, pp. 859–864.

    Article  Google Scholar 

  20. Khokhlov, A.N., Does aging need an own program or the existing development program is more than enough?, Russ. J. Gen. Chem., 2010, vol. 80, no. 7, pp. 1507–1513.

    Article  CAS  Google Scholar 

  21. Khokhlov, A.N., Does aging need its own program, or is the program of development quite sufficient for it? Stationary cell cultures as a tool to search for anti-aging factors, Curr. Aging Sci., 2013, vol. 6, no. 1, pp. 14–20.

    Article  CAS  PubMed  Google Scholar 

  22. Khokhlov, A.N., Proliferatsiya i starenie (Cell Proliferation and Aging), Itogi Nauki i Tekhniki VINITI AN SSSR. Ser. Obshchie Problemy Fiziko-Khimicheskoi Biologii (Advances in Science and Technology, VINITI Akad. Sci. USSR, Ser. General Problems of Physicochemical Biology), Moscow: VINITI, 1988, vol. 9.

  23. Vilenchik, M.M., Khokhlov, A.N., and Grinberg, K.N., Study of spontaneous DNA lesions and DNA repair in human diploid fibroblasts aged in vitro and in vivo, Stud. Biophys., 1981, vol. 85, no. 1, pp. 53–54.

    CAS  Google Scholar 

  24. Khokhlov, A.N., Stationary cell cultures as a tool for gerontological studies, Ann. N. Y. Acad. Sci., 1992, vol. 663, pp. 475–476.

    Article  CAS  PubMed  Google Scholar 

  25. Khokhlov, A.N., Cell proliferation restriction: is it the primary cause of aging? Ann. N. Y. Acad. Sci., 1998, vol. 854, p. 519.

    Article  Google Scholar 

  26. Akimov, S.S. and Khokhlov, A.N., Study of “stationary phase aging” of cultured cells under various types of proliferation restriction, Ann. N. Y. Acad. Sci., 1998, vol. 854, p. 520.

    Article  Google Scholar 

  27. Campisi, J., Aging, cellular senescence, and cancer, Annu. Rev. Physiol., 2013, vol. 75, pp. 685–705.

    Article  CAS  PubMed  Google Scholar 

  28. Harman, D., About “Origin and evolution of the free radical theory of aging: a brief personal history, 19542009”, Biogerontology, 2009, vol. 10, no. 6, p. 783.

    Article  PubMed  Google Scholar 

  29. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M., and Campisi, J., A biomarker that identifies senescent human cell in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, no. 20, pp. 9363–9367.

    Article  CAS  PubMed  Google Scholar 

  30. Lawless, C., Wang, C., Jurk, D., Merz, A., von Zglinicki, T., and Passos, J.F., Quantitative assessment of markers for cell senescence, Exp. Gerontol., 2010, vol. 45, no. 10, pp. 772–778.

    Article  CAS  PubMed  Google Scholar 

  31. Sikora, E., Bennett, M., and Narita, M., Impact of cellular senescence signature on ageing research, Ageing Res. Rev., 2011, vol. 10, no. 1, pp. 146–152.

    Article  CAS  PubMed  Google Scholar 

  32. Yegorov, Y.E., Akimov, S.S., Hass, R., Zelenina, V., and Prudovsky, I.A., Endogenous beta-galactosidase activity in continuously nonproliferating cells, Exp. Cell Res., 1998, vol. 243, no. 1, pp. 207–211.

    Article  CAS  PubMed  Google Scholar 

  33. Krishna, D.R., Sperker B., Fritz, P., and Klotz, U., Does pH 6 beta-galactosidase activity indicate cell senescence?, Mech. Ageing Dev., 1999, vol. 109, no. 2, pp. 113–123.

    Article  CAS  PubMed  Google Scholar 

  34. Severino, J., Allen, R.G., Balin, S., Balin, A., and Cristofalo, V.J., Is beta-galactosidase staining a marker of senescence in vitro and in vivo?, Exp. Cell Res., 2000, vol. 257, no. 1, pp. 162–171.

    Article  CAS  PubMed  Google Scholar 

  35. Choi, J., Shendrik, I., Peacocke, M., Peehl, D., Buttyan, R., Ikeguchi, E.F., Katz, A.E., and Benson, M.C., Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia, Urology, 2000, vol. 56, no. 1, pp. 160–166.

    Article  CAS  PubMed  Google Scholar 

  36. Untergasser, G., Gander, R., Rumpold, K., Heinrich, E., Plas, E., and Berger, P., TGF-beta cytokines increase senescence-associated beta-galactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence, Exp. Gerontol., 2003, vol. 38, no. 10, pp. 1179–1188.

    Article  CAS  PubMed  Google Scholar 

  37. Kang, H.T., Lee, C.J., Seo, E.J., Bahn, Y.J., Kim, H.J., and Hwang, E.S., Transition to an irreversible state of senescence in HeLa cells arrested by repression of HPV E6 and E7 genes, Mech. Ageing Dev., 2004, vol. 125, no. 1, pp. 31–40.

    Article  CAS  PubMed  Google Scholar 

  38. Cristofalo, V.J., SA beta Gal staining: biomarker or delusion, Exp. Gerontol., 2005, vol. 40, no. 10, pp. 836–838.

    Article  CAS  PubMed  Google Scholar 

  39. Vladimirova, I.V., Shilovsky, G.A., Khokhlov, A.N., and Shram, S.I., “Age-related” changes of the poly(ADP-ribosyl)ation system in cultured Chinese hamster cells, in Visualizing of Senescent Cells in Vitro and in Vivo, Progjrajnme and Abstracts, Warsaw, Poland, December l5–16, 2012), Warsaw, Poland, 2012, pp. 108–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Khokhlov.

Additional information

Original Russian Text © A.N. Khokhlov, 2013, published in Vestnik Moskovskogo Universiteta. Biologiya, 2013, No. 4, pp. 18–22.

About this article

Cite this article

Khokhlov, A.N. Evolution of the term “cellular senescence” and its impact on the current cytogerontological research. Moscow Univ. Biol.Sci. Bull. 68, 158–161 (2013). https://doi.org/10.3103/S0096392513040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392513040123

Keywords

Navigation