Skip to main content
Log in

The Maximum Operating Range of a Distributed Sensor Based on a Phase-Sensitive Optical Time-Domain Reflectometer Utilizing Telecommunication Fiber with Reflective Centers

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

An optimal arrangement of point reflectors inscribed by femtosecond laser pulses in a standard telecommunication fiber is found, which provides the maximum operating range of distributed sensors based on phase-sensitive optical time-domain reflectometers (\(\phi\)OTDRs). It is shown that the operating distance of an \(\phi\)OTDR utilizing probe pulses with a duration of 200 ns can be increased by 53 km using ultra-low-loss fiber with an attenuation of 0.16 dB/km, thereby extending it to 173 km without using distributed, remotely pumped, or in-line amplifiers. When using the most widespread standard telecom fiber with an attenuation of 0.185 dB/km, the operating distance can be increased by 48 km (up to 152 km total).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. S. V. Shatalin, V. N. Treschikov, and A. J. Rogers, Appl. Opt. 37, 5600 (1998).

    Article  ADS  Google Scholar 

  2. A. H. Hartog, An Introduction to Distributed Optical Fibre Sensors (CRC, Boca Raton, FL, 2017).

    Book  Google Scholar 

  3. S. P. Nikitin, A. I. Kuzmenkov, V. V. Gorbulenko, et al., Laser Phys. 28, 085107 (2018).

    Article  ADS  Google Scholar 

  4. D. Chen, Q. Liu, X. Fan, and Z. He, J. Lightwave Technol. 35, 2037 (2017).

    Article  ADS  Google Scholar 

  5. D. Starykh, S. Akopov, D. Kharasov, et al., IEEE Photon. Technol. Lett. 31, 1799 (2019).

    Article  ADS  Google Scholar 

  6. S. A. Babin, A. E. Ismagulov, E. V. Podivilov, et al., Laser Phys. 20, 334 (2010).

    Article  ADS  Google Scholar 

  7. S. P. Nikitin, P. I. Ulanovskiy, A. I. Kuzmenkov, et al., Laser Phys. 26, 105106 (2016).

    Article  ADS  Google Scholar 

  8. L. D. van Putten, A. Masoudi, and G. Brambilla, Opt. Lett. 44, 5925 (2019).

    Article  ADS  Google Scholar 

  9. D. R. Kharasov, O. E. Nanii, S. P. Nikitin, and V. N. Treschikov, in Proceedings of the 2018 International Conference Laser Optics ICLO (IEEE, 2018), p. 285.

  10. D. R. Kharasov, E. A. Fomiryakov, S. P. Nikitin, et al., in Proceedings of the International Conference Laser Optics ICLO (IEEE, 2020), p. 1-1.

  11. F. Peng, H. Wu, X. Jia, et al., Opt. Express 22, 13804 (2014).

    Article  ADS  Google Scholar 

  12. Z. N. Wang, J. J. Zeng, J. Li, et al., Opt. Lett. 39, 5866 (2014).

    Article  ADS  Google Scholar 

  13. E. T. Nesterov, V. N. Treshchikov, A. Zh. Ozerov, M. A. Sleptsov, V. A. Kamynin, O. E. Nanii, and A. A. Sus’yan, Tech. Phys. Lett. 37, 417 (2011).

    Article  ADS  Google Scholar 

  14. K. Hicke, R. Eisermann, and S. Chruscicki, Sensors 19, 4114 (2019).

    Article  ADS  Google Scholar 

  15. B. Redding, M. J. Murray, A. Donko, et al., Opt. Express 28, 14638 (2020).

    Article  ADS  Google Scholar 

  16. T. Liu, F. Wang, X. Zhang, et al., Opt. Eng. 56, 084104 (2017).

    ADS  Google Scholar 

  17. V. A. Handerek, M. Karimi, A. Nkansah, et al., in Proceedings of the 26th International Conference on Optical Fiber Sensors (Opt. Soc. Am., 2018), Paper No. TuC5.

  18. P. S. Westbrook, K. S. Feder, R. M. Ortiz, et al., in Proceedings of the 25th Optical Fiber Sensors Conference OFS (IEEE, 2017), p. 1.

  19. G. Cedilnik, G. Lees, P. E. Schmidt, et al., IEEE Sens. Lett. 3 (3), 1 (2019).

    Article  Google Scholar 

  20. A. Masoudi, M. Beresna, and G. Brambilla, Opt. Lett. 46, 552 (2021).

    Article  ADS  Google Scholar 

  21. D. R. Kharasov, D. M. Bengalskii, M. Y. Vyatkin, et al., Quantum Electron. 50, 510 (2020).

    Article  ADS  Google Scholar 

  22. A. V. Listvin and V. N. Listvin, Optical Fiber Reflectometry (LESARart, Moscow, 2005) [in Russian].

  23. M. A. Fernández-Ruiz, H. F. Martins, J. Pastor-Graells, et al., Opt. Lett. 50, 5756 (2016).

    Article  ADS  Google Scholar 

  24. R. Posey, G. A. Johnson, and S. T. Vohra, Electron. Lett. 36, 1688 (2000).

    Article  ADS  Google Scholar 

  25. A. Masoudi, M. Belal, and T. P. Newson, Meas. Sci. Technol. 24, 085204 (2013).

    Article  ADS  Google Scholar 

  26. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, et al., Laser Phys. 24, 115106 (2014).

    Article  ADS  Google Scholar 

  27. T. O. Lukashova, O. E. Nanii, S. P. Nikitin, and V. N. Treshchikov, Quantum Electron. 50, 882 (2020).

    Article  ADS  Google Scholar 

  28. D. M. Bengalskii, D. R. Kharasov, E. A. Fomiryakov, et al., Quantum Electron. 51, 175 (2021).

    Article  ADS  Google Scholar 

  29. A. E. Alekseev, V. S. Vdovenko, B. G. Gorshkov, et al., Laser Phys. 25, 065101 (2015).

    Article  ADS  Google Scholar 

  30. Z. Ju, Z. Yu, Q. Hou, et al., Appl. Opt. 59, 1864 (2020).

    Article  ADS  Google Scholar 

  31. Y. Muanenda, J. Sensors 2018.

  32. M. R. Nakazawa, J. Opt. Soc. Am. 73, 1175 (1983).

    Article  ADS  Google Scholar 

  33. A. Wolf, A. Dostovalov, K. Bronnikov, and S. Babin, Opt. Express 27, 13978 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Kharasov.

Additional information

Translated by V. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharasov, D.R., Bengalskii, D.M., Fomiryakov, E.A. et al. The Maximum Operating Range of a Distributed Sensor Based on a Phase-Sensitive Optical Time-Domain Reflectometer Utilizing Telecommunication Fiber with Reflective Centers. Moscow Univ. Phys. 76, 167–175 (2021). https://doi.org/10.3103/S0027134921030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134921030048

Keywords:

Navigation