Skip to main content
Log in

Single-Electron Structures Based on Solitary Dopant Atoms of Arsenic, Phosphorus, Gold, and Potassium in Silicon

  • Physics of Condensed State of Matter
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Here we present CMOS compatible fabrication methods and the results of an experimental study of single-atom single-electron transistors made from silicon on insulator and based on various dopant atoms. Transistors with channels doped with arsenic (As), phosphorus (P), gold (Au) and potassium (K) atoms were fabricated and studied. Two methods for fabricating of experimental transistor structures are presented. The first method (As, P transistors) used a inhomogeneously doped in depth silicon layer and controlled reduction of the size of the transistor channel in several cycles of isotropic reactive-ion etching. The second method (Au and K transistors) used an undoped silicon layer and the subsequent implantation of dopant atoms into a preformed transistor channel. Dopant electron and hole levels of Au and K atoms in silicon are located near the middle of the silicon band gap, which provides a small effective size of the dopant charge center and, as a result, a high value of the charge energy and operating temperature of the transistor compared to the traditional dopants (P, As, Sb, B). The values of the charge energy of the Au and K transistors, which were estimated from the measurements (Ec ≥ 150 meV), are much higher than those of the As and P transistors (Ec < 30 meV). Important advantages of the proposed methods are: controlled implantation of various impurities and possibility to combine etching and implantation cycles during sample preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Lovat, B. Choi, D. W. Paley, et al., Nat. Nanotechnol. 12, 1050 (2017).

    Article  ADS  Google Scholar 

  2. S. J. Shin, J. J. Lee, H. J. Kang, et al., Nano Lett. 11, 1591 (2011).

    Article  ADS  Google Scholar 

  3. B. E. Kane, Nature 393, 133 (1998).

    Article  ADS  Google Scholar 

  4. J. J. Pla, K. Y. Tan, J. P. Dehollain, et al., Nature 489, 541 (2012).

    Article  ADS  Google Scholar 

  5. M. Fuechsle, J. A. Miwa, S. Mahapatra, et al., Nat. Nanotechnol. 7, 242 (2012).

    Article  ADS  Google Scholar 

  6. M. Veldhorst, C. H. Yang, J. C. C. Hwang, et al., Nature 526, 410 (2015).

    Article  ADS  Google Scholar 

  7. G. Yamahata, K. Nishiguchi, and A. Fujiwara, Nat. Commun. 5, 5038 (2014).

    Article  ADS  Google Scholar 

  8. G. C. Tettamanzi, R. Wacquez, and S. Rogge, New J. Phys. 16, 063036 (2014).

    Article  ADS  Google Scholar 

  9. H. Sellier, G. P. Lansbergen, J. Caro, et al., Phys. Rev. Lett. 97, 206805 (2006).

    Article  ADS  Google Scholar 

  10. G. P. Lansbergen, R. Rahman, C. J. Wellard, et al., Nat. Phys. 4, 656 (2008).

    Article  Google Scholar 

  11. M. Pierre, R. Wacquez, X. Jehl, et al., Nat. Nanotechnol. 5, 133 (2010).

    Article  ADS  Google Scholar 

  12. K. Y. Tan, K. W. Chan, M. Mottonen, et al., Nano Lett. 10, 11 (2010).

    Article  ADS  Google Scholar 

  13. E. Prati, M. De Michielis, M. Belli, et al., Nanotechnology 23, 215204 (2012).

    Article  ADS  Google Scholar 

  14. D. Moraru, A. Samanta, T. Mizuno, H. Mizuta, and M. Tabe, Nano Lett. 4, 6219 (2014).

    Google Scholar 

  15. J. A. Miwa, J. A. Mol, J. Salfi, S. Rogge, and M. Y. Simmons, Appl. Phys. Lett. 103, 043106 (2013).

    Article  ADS  Google Scholar 

  16. B. Voisin, J. Salfi, J. Bocquel, R. Rahman, and S. Rogge, J. Phys.: Condens. Matter 27, 154203 (2015).

    ADS  Google Scholar 

  17. A. S. Trifonov, D. E. Presnov, I. V. Bozhev, et al., Ultramicroscopy 179, 33 (2017).

    Article  Google Scholar 

  18. D. E. Presnov, I. V. Bozhev, A. V. Miakonkikh, et al., J. Appl. Phys. 123, 054503 (2018).

    Article  ADS  Google Scholar 

  19. E. Prati, R. Latempa, and M. Fanciulli, Phys. Rev. B 80, 165331 (2009).

    Article  ADS  Google Scholar 

  20. M. Gasseller, M. DeNinno, R. Loo, et al., Nano Lett. 11, 5208 (2011).

    Article  ADS  Google Scholar 

  21. S. J. Hile, M. G. House, E. Peretz, et al., Appl. Phys. Lett. 107, 093504 (2015).

    Article  ADS  Google Scholar 

  22. A. Zhang, G. Zheng, and C. M. Lieber, Nanowires. Building Blocks for Nanoscience and Technology (Springer, Cham, 2016), p. 307.

    Book  Google Scholar 

  23. M. Yu. Rubtsova, G. V. Presnova, V. A. Krupenin, et al., Proc. Technol. 27, 234 (2016).

    Article  Google Scholar 

  24. V. V. Shorokhov, D. E. Presnov, S. V. Amitonov, et al., Nanoscale 9, 613 (2017).

    Article  Google Scholar 

  25. S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, E. S. Soldatov, A. S. Trifonov, V. A. Krupenin, and O. V. Snigirev, Moscow Univ. Phys. Bull. 72, 474 (2017).

    Article  ADS  Google Scholar 

  26. S. A. Dagesyan, V. V. Shorokhov, D. E. Presnov, et al., Nanotechnology 28, 225304 (2017).

    Article  ADS  Google Scholar 

  27. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).

    Book  Google Scholar 

  28. V. V. Shorokhov, Moscow Univ. Phys. Bull. 72, 279 (2017).

    Article  ADS  Google Scholar 

  29. J. Zhang, C. Con, and B. Cui, ACS Nano 8, 3483 (2014).

    Article  Google Scholar 

  30. G. A. Zharik, S. A. Dagesyan, E. S. Soldatov, D. E. Presnov, and V. A. Krupenin, Moscow Univ. Phys. Bull. 72, 627 (2017).

    Article  ADS  Google Scholar 

  31. A. A. Shemukhin, Yu. V. Balakshin, A. P. Evseev, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 507 (2017).

    Article  ADS  Google Scholar 

  32. Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemiako, and V. S. Chernysh, Tech. Phys. 63, 1900 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The equipment of the “Educational and Methodical Center of Lithography and Microscopy,” Moscow State University, was used. We are very grateful to S. Bauerdick, P. Mazarov, A. Nadzeyka, and A. Rudzinski (Raith GmbH) and V. Vlasenko (OPTEC LLC) for providing the unique ionLINE system for ion implantation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. E. Presnov or V. A. Krupenin.

Additional information

Russian Text © The Author(s), 2019, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2019, No. 2, pp. 64–68.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Presnov, D.E., Dagesyan, S.A., Bozhev, I.V. et al. Single-Electron Structures Based on Solitary Dopant Atoms of Arsenic, Phosphorus, Gold, and Potassium in Silicon. Moscow Univ. Phys. 74, 165–170 (2019). https://doi.org/10.3103/S0027134919020164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134919020164

Keywords

Navigation