Skip to main content
Log in

Monte Carlo simulation of thermal neutron flux of americium–beryllium source used in neutron activation analysis

  • Physics of Nuclei and Elementary Particles
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The neutron activation analysis is a method of exclusively elemental analysis. Its implementation of irradiates the sample which can be analyzed by a high neutron flux, this method is widely used in developed countries with nuclear reactors or accelerators of particle. The purpose of this study is to develop a prototype to increase the neutron flux such as americium–beryllium and have the opportunity to produce radioisotopes. Americium–beryllium is a mobile source of neutron activity of 20 curie, and gives a thermal neutron flux of (1.8 ± 0.0007) × 106 n/cm2 s when using water as moderator, when using the paraffin, the thermal neutron flux increases to (2.2 ± 0.0008) × 106 n/cm2 s, in the case of adding two solid beryllium barriers, the distance between them is 24 cm, parallel and symmetrical about the source, the thermal flux is increased to (2.5 ± 0.0008) × 106 n/cm2 s and in the case of multi-source (6 sources), with-out barriers, increases to (1.17 ± 0.0008) × 107 n/cm2 s with a rate of increase equal to 4.3 and with the both barriers flux increased to (1.37 ± 0.0008) × 107 n/cm2 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. M. Sogbadji, R. G. Abrefah, B. J. B. Nyarko, E.H. K. Akaho, H. C. Odoi, and S. Attakorah-Birinkorang, Appl. Radiat. Isot. 90, 192 (2014). doi 10.1016/j.apradiso.2014.03.017

    Article  Google Scholar 

  2. P. A. Lessing and I. Glagolenko, Preprint INL/CON-11-21102 (Idaho National Laboratory, Idaho Falls, 2011).

  3. B. C. Anderson, K. E. Holbert, and H. Bowler, Sci. Technol. Nucl. Install. 2016, 9012747 (2016). doi 10.1155/2016/9012747

    Article  Google Scholar 

  4. A. Didi, A. Dadouch, O. Jai, J. Tajmouati, and H. El Bekkouri, Nucl. Eng. Technol. 49, 787 (2017). doi 10.1016/j.net.2017.02.002

    Article  Google Scholar 

  5. J. Yang, Y. Yang, Y. Li, X. Tuo, M. Liu, Z. Li, Y. Cheng, L. Wang, and K. Mu, Nucl. Sci. Tech. 23, 337 (2012).

    Google Scholar 

  6. K. Siddappa and K. M. Balakrishna, in Proc. 14thWorld Conf. on Non-Destructive Testing, New Delhi, 1996, Vol. 2, pp. 389–392.

  7. M. Asamoah, B. J. B. Nyarko, J. J. Fletcher, R. B. M. Sogbadji, S. Yamoah, S. E. Agbemava, and E. Mensimah, Ann. Nucl. Energy 38, 1219 (2011). doi 10.1016/j.anucene.2011.02.014

    Article  Google Scholar 

  8. T. Goorley, M. James, T. Booth, et al., Report No. LA-UR-13-22934 (Los Alamos National Laboratory, Los Alamos, 2013).

  9. M. R. James, D. B. Pelowitz, A. J. Fallgren, et al., Report No. LA-CP-14-00745 (Los Alamos National Laboratory, Los Alamos, 2014).

  10. T. Miura and H. Matsue, Nucl. Eng. Technol. 48, 299 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessamad Didi.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Didi, A., Dadouch, A., Bencheikh, M. et al. Monte Carlo simulation of thermal neutron flux of americium–beryllium source used in neutron activation analysis. Moscow Univ. Phys. 72, 460–464 (2017). https://doi.org/10.3103/S0027134917050022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917050022

Keywords

Navigation