Skip to main content
Log in

Molecular nanocluster fluorescence in microwave infrared-radiation fields

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The paper considers a donor-acceptor nanocluster fluorescing in a microwave infrared radiation field. It is assumed that the nanocluster consists of two dipole-dipole interacting organic molecules. It is shown that the fluorescence process of the nanocluster occurs if the donor molecule contains a substructure of identical diatomic pairwise interacting bonds of dipoles (an IR antenna). This antenna is capable of accumulating vibrational energy as a sum of collective vibrational quanta (excimols). The acceptor molecule has no permanent dipole moment and cannot be excited by microwave IR radiation. This molecule is polarized in the dipole moment field of the donor IR antenna and can receive energy accumulated in the IR antenna of the donor molecule. If the acceptor molecule has an electronically excited state in the long-wavelength visible region of its absorption spectrum, then after receiving energy equal to the energy of this state from the donor antenna, the electronic excitation of the acceptor molecule and its fluorescence is possible. As an example, the fluorescence of a nanocluster is considered whose donor molecule has a C n H2n IR antenna. The acceptor molecule is aromatic and the external infrared frequency, 1.1 × 1014 s−1, is equal to the frequency of the excimol in the donor infrared antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Th. Foerster, Ann. Phys. 2, 55 (1948).

    Article  MATH  Google Scholar 

  2. G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).

    Article  ADS  Google Scholar 

  3. D. L. Andrews, J. Chem. Phys. 135, 195 (1989).

    Article  Google Scholar 

  4. H. Jungclas, L. Schmidt, H. -W. Fritsch, and V. V. Komarov, Comput. Mater. Sci. 2, 427 (1994).

    Article  Google Scholar 

  5. H. Jungclas, A. Wieghaus, L. Schmidt, et al., J. Amer. Soc. Mass. Spectrom. 10, 471 (1999).

    Article  Google Scholar 

  6. H. Jungclas, V. V. Komarov, A. M. Popova, et al., Z. Phys. Chem. 221, 1075 (2007).

    Article  Google Scholar 

  7. V. V. Komarov, A. M. Popova, I. O. Stureiko, et al., Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 6, 3 (2007).

    Google Scholar 

  8. M. V. Vol’kenshtein, Structure and Physical Properties of Molecules (AN SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  9. A. J. Stone, The Theory of Intermolecular Forces (Clarendon, Oxford, 1996).

    Google Scholar 

  10. H. Jungclas, L. Schmidt, V. V. Komarov, et al., Z. Naturforsch. 57a, 270 (2002).

    Google Scholar 

  11. V.S. Letokhov, Non-Linear Selective Photoprocesses in Atoms and Molecules (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Popova.

Additional information

Original Russian Text © V.V. Komarov, A.M. Popova, I.O. Stureiko, L. Schmidt, H. Jungclas, 2013, published in Vestnik Moskovskogo Universiteta. Fizika, 2013, No. 5, pp. 3–7.

About this article

Cite this article

Komarov, V.V., Popova, A.M., Stureiko, I.O. et al. Molecular nanocluster fluorescence in microwave infrared-radiation fields. Moscow Univ. Phys. 68, 339–343 (2013). https://doi.org/10.3103/S0027134913050093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134913050093

Keywords

Navigation