Skip to main content
Log in

The Sorption of Radionuclides on Clay Minerals—the Components of Engineering Safety Barriers

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

The sorption properties of various clay minerals and materials based on them in relation to Cs(I), Sr(II), U(VI), Eu(III), and Pu(IV,V,VI) are compared. To determine the mineral composition, all the samples are studied by X-ray diffraction and X-ray fluorescence, the values of the specific surface are determined, and sorption experiments are carried out. It is shown that the high concentration of swelling clay minerals (montmorillonite, mixed-layer clay minerals) in the barrier material will contribute to its high sorption capacity in relation to the majority of the studied radionuclides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. RB-117-16: Long-Term Safety Assessment of Near-Surface Disposal Facilities for Radioactive Waste, Moscow, 2016.

  2. Pusch, R., Clay Miner., 1992, vol. 27, p. 353.

    Article  CAS  Google Scholar 

  3. Delage, P., Cui, Y.J., and Tang, A., J. Rock Mech. Geotech. Eng, 2010, vol. 2, p. 111.

    Article  Google Scholar 

  4. Murali, M.S. and Mathur, J.N., J. Radioanal. Nucl. Chem., 2002, vol. 254, no. 1, p. 129.

    Article  CAS  Google Scholar 

  5. Galambos, M., et al., J. Radioanal. Nucl. Chem., 2010, no. 284, p. 55.

  6. Kuleshova, M.L., Danchenko, N.N., Sergeev, V.I., and Shimko, T.G., Moscow Univ. Geol. Bull. (Engl. Transl.), 2017, vol. 72, p. 290.

  7. Yildiz, B., Erten, H.N., and Kıs, M., J. Radioanal. Nucl. Chem., 2011, vol. 288, no. 2, p. 475.

    Article  CAS  Google Scholar 

  8. Borai, E.H., Harjula, R., and Paajanen, A., J. Hazard. Mater., 2009, vol. 172, p. 416.

    Article  CAS  PubMed  Google Scholar 

  9. Krumhansl, J.L., Brady, P.V., and Anderson, H.L., J. Contam. Hydrol., 2001, vol. 47, p. 233.

    Article  CAS  PubMed  Google Scholar 

  10. Sellin, P. and Leupin, O.X., Clays Clay Miner., 2014, vol. 61, no. 6, p. 477.

    Article  CAS  Google Scholar 

  11. Krupskaya, V.V., et al., Radioakt. Otkhody, 2018, vol. 2, no. 3, p. 30.

    Google Scholar 

  12. Krupskaya, V.V. and Belousov, P.E., Georesursy, 2019, vol. 21, no. 3, p. 79.

    Article  Google Scholar 

  13. Belousov, P.E., et al., Georesursy, 2020, vol. 22, no. 3, p. 38.

    Article  Google Scholar 

  14. Krupskaya, V.V., et al., Minerals, 2017, vol. 7, p. 49.

    Article  CAS  Google Scholar 

  15. Guggenheim, S., et al., Clay Miner., 2006, vol. 41, no. 4, p. 863.

    Article  CAS  Google Scholar 

  16. Drits, V.A. and Kossovskaya, A.G., Glinistye mineraly: smektity, smeshanosloinye obrazovaniya (Clay Minerals: Smectites, Mixed-Layer Formations), Moscow: Nauka, 1990.

  17. Moore, D.M. and Reynolds, R.C., Jr., X-Ray Diffraction and the Identification and Analysis of Clay Minerals, Oxford: Oxford Univ. Press, 1997.

    Google Scholar 

  18. Post, J.E., Rev. Mineral. Geochem., 1989, no. 20, p. 277.

  19. Doebelin, N. and Kleeberg, R., J. Appl. Crystallogr., 2015, vol. 48, p. 1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Belousov, P., Chupalenkov, N., Zakusin, S., Morozov, I., Dorzhieva, O., and Chernov, M.K.V., Appl. Clay Sci. (in press).

  21. Krupskaya, V.V., Zakusin, S.V., Tyupina, E.A., and Dorzhieva, O.V., Geochem. Int., 2019, vol. 57, p. 314.

    Article  CAS  Google Scholar 

  22. Krupskaya, V.V., et al., Minerals, 2017, vol. 7, no. 4, 7040049.

    Article  CAS  Google Scholar 

  23. Verma, P.K., et al., Appl. Clay Sci., 2019, vol. 175, p. 22.

    Article  CAS  Google Scholar 

  24. Il’ina, O.A., et al., Radioakt. Otkhody, 2019, vol. 4, no. 9, p. 71.

    Google Scholar 

  25. Martynov, K.V., Zakharova, E.V., Dorofeev, A.N., Zubkov, A.A., and Prishchep, A.A., Radioakt. Otkhody, 2020, vol. 3, p. 39.

    Google Scholar 

  26. Martynov, K.V., Zakharova, E.V., Dorofeev, A.N., Zubkov, A.A., and Prishchep, A.A., Radioakt. Otkhody, 2020, vol. 3, p. 1.

    Google Scholar 

  27. Chubreev, D.O., et al., Izv. Tomsk. Politekh. Univ. Inzh. Georesur., 2016, vol. 327, no. 2, p. 83.

    Google Scholar 

  28. Kiseleva, I.A., Ogorodova, L.P., Krupskaya, V.V., Mel’chakova, L.V., Vigasina, M.F., and Luse, I., Geochem. Int., 2011, vol. 49, 793.

    Article  CAS  Google Scholar 

  29. Kerpen, W., in Application of Distribution Coeffi cients to Radiological Assessment Models, Sibley, T.H. and Myttenaere, C., Eds., Amsterdam: Elsevier, 1986, p. 322.

    Google Scholar 

  30. Coughtrey, P.J. and Thorne, M.C., Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosystems: A Critical Review of Data, Rotterdam: EC Commission, 1983, vol. 1.

    Google Scholar 

  31. Lehto, J. and Hou, X., Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology, New York: Wiley, 2010.

    Book  Google Scholar 

  32. Missana, T., et al., Geochim. Cosmochim. Acta, 2014, vol. 128, p. 266.

    Article  CAS  Google Scholar 

  33. Cornell, R.M., J. Radioanal. Nucl. Chem., 1993, vol. 171, no. 2, p. 483.

    Article  CAS  Google Scholar 

  34. Belousov, P., et al., Minerals, 2019, vol. 9, p. 625.

    Article  CAS  Google Scholar 

  35. Semenkova, A.S., et al., Appl. Clay Sci., 2018, vol. 166, p. 88.

    Article  CAS  Google Scholar 

  36. Robin, V., et al., Appl. Geochem., 2015, vol. 59, p. 74.

    Article  CAS  Google Scholar 

  37. Yamaguchi, A., et al., J. Radioanal. Nucl. Chem., 2018, vol. 317, no. 1, p. 545.

    Article  CAS  Google Scholar 

  38. Sahai, N., et al., J. Colloid Interface Sci., 2000, vol. 222, no. 2, p. 198.

    Article  CAS  PubMed  Google Scholar 

  39. Carroll, S.A., et al., Geochem. Trans., 2008, vol. 26, p. 1.

    Google Scholar 

  40. Dyer, A., Chow, J.K.K., and Umar, I.M., J. Mater., 2000, vol. 10, no. 12, p. 2734.

    CAS  Google Scholar 

  41. Majdan, A.G.M., J. Radioanal. Nucl. Chem., 2014, vol. 301, p. 33.

    Article  CAS  Google Scholar 

  42. Kimura, T., Kato, Y., and Minai, Y., Environ. Sci. Technol., 1999, vol. 33, no. 22, p. 4016.

    Article  CAS  Google Scholar 

  43. Verma, P.K., et al., Appl. Clay Sci., 2019, vol. 175, p. 22.

    Article  CAS  Google Scholar 

  44. Coppin, F., et al., Chem. Geol., 2002, vol. 182, no. 1, p. 57.

    Article  CAS  Google Scholar 

  45. Stumpf, B.T., et al., Radiochim. Acta, 2002, vol. 349, p. 345.

    Article  Google Scholar 

  46. Tertre, E., et al., Geochim. Cosmochim. Acta, 2006, vol. 70, no. 18, p. 4563.

    Article  CAS  Google Scholar 

  47. Fernandes, M.M., Scheinost, A.C., and Baeyens, B., Water Res., 2016, vol. 99, p. 74.

    Article  CAS  PubMed  Google Scholar 

  48. Chisholm-Brause, C.J., et al., J. Colloid Interface Sci., 2004, vol. 277, no. 2, p. 366.

    Article  CAS  PubMed  Google Scholar 

  49. Morris, D.E., et al., Geochim. Cosmochim. Acta, 1994, vol. 58, no. 17, p. 3613.

    Article  CAS  Google Scholar 

  50. Turner, G.D., et al., Geochim. Cosmochim. Acta, 1996, vol. 60, no. 18, p. 3399.

    Article  CAS  Google Scholar 

  51. Zavarin, B.M., et al., Environ. Sci. Technol., 2012, vol. 46, no. 5, p. 2692.

    Article  CAS  PubMed  Google Scholar 

  52. Begg, J.D., et al., Appl. Geochem., 2018, vol. 96, no. 5, p. 131.

    Article  CAS  Google Scholar 

  53. Begg, J.D., et al., Environ. Sci. Technol., 2013, vol. 47, p. 5146.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The sorption experiments were supported by the Russian Science Foundation (project no. 20-73-00135). The mineral analysis was partially supported by the Russian Foundation for Basic Research (project no. 18-29-12115 mk). The study was performed within the Development Program of the Interdisciplinary Scientific and Educational School of Moscow State University “The Future of the Planet and Global Environmental Changes.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Semenkova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Supplementary Information

There are no supplementary materials.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenkova, A.S., Ilina, O.A., Krupskaya, V.V. et al. The Sorption of Radionuclides on Clay Minerals—the Components of Engineering Safety Barriers. Moscow Univ. Chem. Bull. 76, 316–324 (2021). https://doi.org/10.3103/S0027131421050047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131421050047

Keywords:

Navigation