Skip to main content
Log in

Piecewise-Linear Yield Loci of Angle-Ply Reinforced Medium of Different-Resisting Rigid-Plastic Materials at 2D Stress State

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The structural model of hybrid composites angle-ply that were reinforced parallel to some plane is constructed for the analytical determination of the composition’s yield loci while considering the plane stress state in all components. The materials of the components are homogeneous and isotropic, as well as have different yield strengths in tension and compression. Their mechanical behavior is described by the associated flow law for a rigid-plastic body with the piecewise-linear yield conditions of Johansen, Tresca, Hu, and Ishlinsky–Ivlev. The cases of fiber placement along the trajectories of the principal stresses in the composition and the cases of angle-ply reinforcement symmetric with respect to these trajectories are considered. The influence of the reinforcement structure (of directions and densities) on the size and shape of the yield loci of compositions is investigated. It is shown by numerical computations that the plastic flow in the compositions is associated with the calculated yield loci of reinforced media. As an example, yield loci for metal compositions with high-strength and low-strength binder and for fiberglass reinforced media are constructed. The calculated yield loci of the compositions are compared with the ones determined using different variants of the structural model with one-dimensional stress state in fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. V. Vasiliev and E. Morozov, Advanced Mechanics of Composite Materials and Structural Elements (Elsever, Amsterdam, 2013).

    Google Scholar 

  2. M. F. Caliri, Jr., A. J. M. Ferreira, and V. Tita, “A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method,” Compos. Struct. 156 (15), 63–77 (2016). https://doi.org/10.1016/j.compstruct.2016.02.036

    Article  Google Scholar 

  3. Yu. I. Dimitrienko, Mechanics of Composite Structures at High Temperatures (Fizmatlit, Moscow, 2019) [in Russian].

    Google Scholar 

  4. F. D. Moriniere, R. C. Alderliesten, and R. Benedictus, “Modelling of impact damage and dynamics in fibremetal laminates – a review,” Int. J. Impact. Eng. 67, 27–38 (2014). https://doi.org/10.1016/j.ijimpeng.2014.01.004

    Article  Google Scholar 

  5. N. Jones, “Note on the impact behaviour of fibre-metal laminates,” Int. J. Impact. Eng. 108, 147–152 (2017). https://doi.org/10.1016/j.ijimpeng.2017.04.004

    Article  Google Scholar 

  6. S. K. Gill, M. Gupta, and P. Satsangi, “Prediction of cutting forces in machining of unidirectional glass-fiber-reinforced plastic composites,” Front. Mech. Eng. 8 (2), 187–200 (2013). https://doi.org/10.1007/s11465-013-0262-x

    Article  Google Scholar 

  7. G. I. L’vov and O. A. Kostromitskaya, “Numerical modeling of plastic deformation of unidirectionally reinforced composites,” Mech. Compos. Mater. 56 (1) (2020). https://doi.org/10.1007/s11029-020-09856-8

  8. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press, Boca Raton, 2004).

    Book  Google Scholar 

  9. Yu. S. Solomonov and V. P. Georgievskii, et al., Applied Problems of Mechanics of Composite Cylindrical Shells (Fizmatlit, Moscow, 2014) [in Russian].

    Google Scholar 

  10. J. Zickel, “Isotensoid pressure vessels,” ARS J. 32, 950–951 (1962).

    Google Scholar 

  11. A. Kelly and W. R. Tyson, “Tensile properties of fiber-reinforced metals: copper/tungsten and copper/molybdenum,” J. Mech. Phys. Solids 13 (6), 329–350 (1965). https://doi.org/10.1016/0022-5096(65)90035-9

    Article  ADS  Google Scholar 

  12. Yu. V. Nemirovskii, “On the condition of plasticity (strength) for a reinforced layer,” J. Appl. Mech. Techn. Phys. 10 (5), 759–765 (1969). https://doi.org/10.1007/BF00907434

    Article  ADS  Google Scholar 

  13. Z. Mróz and F. G. Shamiev, “Simplified yield condition for fiber-reinforced plates and shells,” Arch. Inż. Ląd. 2 (3), 463–476 (1979).

    Google Scholar 

  14. W. Tian, L. Qi, X. Chao, et al., “A new interpolative homogenization model for evaluation of the effective elasto-plastic responses of two-phase composites,” Compos. Struct. 210 (15), 810–821 (2019). https://doi.org/10.1016/j.compstruct.2018.11.075

    Article  Google Scholar 

  15. I. Doghri, L. Adam, and N. Bilger, “Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method,” Int. J. Plast. 26 (2), 219–238 (2010). https://doi.org/10.1016/j.ijplas.2009.06.003

    Article  MATH  Google Scholar 

  16. L. Brassart, L. Stainier, I. Doghri, et al., “Homogenization of elasto-(visco) plastic composites based on an incremental variational principle,” Int. J. Plast. 36, 86–112 (2012). https://doi.org/10.1016/j.ijplas.2012.03.010

    Article  Google Scholar 

  17. A. F. Fedotov, “Hybrid model for homogenization of elastoplastic properties of isotropic matrix composites,” Mech. Compos. Mater. 53 (3), 361–372 (2017). doi.org/https://doi.org/10.1007/s11029-017-9667-7

    Article  ADS  Google Scholar 

  18. A. P. Yankovskii, “Determination of thermoelastic characteristics of spatially reinforced fibrous media in case of general anisotropy of their components. 1. Structural model,” Mech. Compos. Mater. 46 (5), 663–678 (2010). https://doi.org/10.1007/s11029-010-9162-x

    Article  Google Scholar 

  19. V. M. Akhundov, “Incremental carcass theory of fibrous media under large elastic and plastic deformations,” Mech. Compos. Mater. 51 (3), 539–558 (2015). https://doi.org/10.1007/s11029-015-9509-4

    Article  Google Scholar 

  20. E. Małakhovski, G. L’vov, and S. Daryazadekh, “Numerical prediction of parameters of yield criterion for fibrous composites,” Mech. Compos. Mater. 53 (5), 843–862 (2017). https://doi.org/10.1007/s11029-017-9689-1

    Article  Google Scholar 

  21. T. P. Romanova and A. P. Yankovskii, “Yield loci of reinforced plates made from rigid-plastic unequiresistant materials considering the two-dimensional stress state in fibers. I. Unidirectional reinforcement,” Mech. Compos. Mater. 55 (6), 1019–1042 (2019). https://doi.org/10.1007/s11029-020-09845-x

    Article  Google Scholar 

  22. Handbook of Composites, G. Lubin (Van Nostrand Reinhold, New York, 1982).

  23. R. Hill, Mathematical Theory of Plasticity (Oxford Univ. Press, New York, 1950).

    MATH  Google Scholar 

  24. Composite Materials. Handbook, Ed. by D. M. Karpinos (Naukova dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  25. A. R. Rzhanitsyn, Limit Balance of Plates and Shells (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  26. Yu. V. Nemirovskii and A. P. Yankovskii, “Limit balance of reinforced concrete domes of rotation,” Izv. Vyssh. Uchebn. Zaved., Stroit., No. 8, 4–11 (2005).

  27. I. N. Kubishev, “Limit load for composite circular plate with various fixation conditions,” Mekh. Mash., Mekh. Mater. 15 (1), 56–60 (2011).

    Google Scholar 

  28. T. P. Romanova, “Carrying capacity and optimization of three-layer reinforced circular plate of differently resistant materials, supported on the internal contour,” Probl. Prochn. Plast. 77 (3), 286–300 (2015). https://doi.org/10.32326/1814-9146-2015-77-3-286-300

    Article  Google Scholar 

  29. A. A. Jakhangirov, “Load-carrying capacity of fiber-reinforced annular tree-layer composite plate clamped on its external and internal contours,” Mech. Compos. Mater. 52 (2), 271–280 (2016). https://doi.org/10.1007/s11029-016-9579-y

    Article  ADS  Google Scholar 

  30. T. P. Romanova, “Modeling of rigid-plastic dynamic bending of reinforced layered circular plates with arbitrary hole on viscous foundation under explosive loads,” Probl. Prochn. Plast. 79 (3), 267–284 (2017). https://doi.org/10.32326/1814-9146-2017-79-3-267-284

    Article  Google Scholar 

  31. Yu. N. Rabotnov, Introduction in Destruction Mechanics (Nauka, Moscow, 1987) [in Russian].

    MATH  Google Scholar 

  32. I. G. Zhigun, M. I. Dushin, V. A. Polyakov, et al., “Composites reinforced with system of three straight mutually orthogonal fibers. 2. Experimental study,” Polym. Mech. 9 (6), 895–900 (1973). https://doi.org/10.1007/BF00856974

    Article  ADS  Google Scholar 

  33. T. P. Romanova and A. P. Yankovskii, “Constructing yield loci for rigid-plastic reinforced plates considering the 2D stress state in fibers,” Mech. Compos. Mater. 54 (6), 697–718 (2018). https://doi.org/10.1007/s11029-019-9777-5

    Article  ADS  Google Scholar 

  34. L. W. Hu, “Modified Tresks’s yield condition and associated flow rules for anisotropic materials and applications,” J. Franclin Inst. 265 (3), 187–204 (1958).

    Article  Google Scholar 

  35. G. I. Bykovtsev and D. D. Ivlev, Theory of Plasticity (Dal’nauka, Vladivostok, 1998) [in Russian].

    Google Scholar 

  36. Yu. Mao-hong, “Advances in strength theories for materials under complex stress state in the 20th century,” Appl. Mech. Rev. 55 (3), 169–200 (2002).

    Article  ADS  Google Scholar 

  37. V. V. Vasil’ev, V. D. Protasov, V. V. Bolotin, et al., Composite Materials: a Handbook (Mashinostroenie, Moscow, 1990) [in Russian].

    Google Scholar 

  38. T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  39. A. K. Malmeister, V. P. Tamuzh, and G. A. Teters, Resistances of Polymeric and Composite Materials (Zinatne, Riga, 1980) [in Russian].

    Google Scholar 

  40. R. M. Christensen, Mechanics of Composite Materials (Wiley, New York, 1979).

    Google Scholar 

  41. N. S. Bakhvalov and G. P. Panasenko, Averaging of Processes in Periodic Media. Mathematical Problems of Mechanics of Composite Materials (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  42. G. A. Vanin, Micromechanics of Composite Materials (Nauk. dumka, Kiev, 1985) [in Russian].

  43. H. G. Hopkins, “Some remarks concerning of the solution of plastic plate problems upon the yield criterion,” in Proc. 9th Int. Congress on Applied Mechanics (Brusseles, 1957), Vol. 6, pp. 448–457.

  44. D. D. Ivlev and L. V. Ershov, Perturbation Methods in Theory of Elastic-Plastic Body (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  45. Composites: State of Art, Ed. by L. W. Weeton and E. Scala (AIME, New York, 1974).

    Google Scholar 

  46. D. Kolarov, A. Baltov, and N. Boncheva, Mechanics of Plastic Media (Mir, Moscow, 1979) [in Russian].

Download references

Funding

The work was supported by the Program for Fundamental Scientific Research of State Academies of Sciences for 2017–2020, project no. 23.4.1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. P. Romanova or A. P. Yankovskii.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, T.P., Yankovskii, A.P. Piecewise-Linear Yield Loci of Angle-Ply Reinforced Medium of Different-Resisting Rigid-Plastic Materials at 2D Stress State. Mech. Solids 55, 1235–1252 (2020). https://doi.org/10.3103/S0025654420080221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420080221

Keywords:

Navigation