Skip to main content
Log in

Experimental Investigation of a Single-Slope Basin Still with a Built-in Additional Flat-Plate Solar Air Collector

  • SOLAR INSTALLATIONS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Fresh water and environmental pollution are great challenges to the sustainable development of human society. and the distillation process solves this problem. The yield of distilled water for a single solar tank is still very low. In this work, experimental investigation into increases the evaporation of the stagnant basin water, an air solar collector was incorporated into the stagnant basin. A comparative investigation between conventional and modified solar stills the experiment is being carried out on specific days in February 2021 under the climatic conditions of Ouargla city (30°52′ N, 5°34′ E) to investigate the impact of solar still inside the wooden box coupled with a flat-plate solar air collector on daily productivity and thermal loss under outdoor climatic conditions. It was found that using the single slope solar still coupled with a flat plat solar air collector increases the daily productivity of the conventional by 6.13% and modified solar stills 36.33%. The change in heat loss from day to day is caused by a change in the ambient temperature and the effect of wind speed, and the lower the thermal loss, the higher the daily productivity for a conventional system, but for the modified, there is no effect on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lim, B.J., Yu, S.S., Chung, K.Y., and Hardin, C.D., Numerical analysis of the performance of a tiltable multi-effect solar distiller, Distillation, 2017, vol. 435, pp. 23–34.

    Google Scholar 

  2. Avezova, N.R., Vokhidov, A.U., Farmonov, A.A., and Dalmuradova, N.N., Renewable energy: challenges and solutions, Appl. Sol. Energy, 2019, vol. 55, pp. 149–152.

    Article  Google Scholar 

  3. Hardin, J., Apparatus for solar distillation, Minutes of the Proceedings of the Institution of Civil Engineers, 1883, vol. 73, pp. 284–288.

  4. Cooper, P.I., The maximum efficiency of single-effect solar stills, Energy, 1973, vol. 15, pp. 205–217.

    Google Scholar 

  5. Kalogirou, S.A., Seawater desalination using renewable energy sources, Prog. Energy Combust. Sci., 2005, vol. 31, pp. 242–281.

    Article  Google Scholar 

  6. Thakur, V.K., Gaur, M.K., Sagar, M.K., and Tiwari, G.N., A study on heat and mass transfer analysis of solar distillation system, J. Therm. Eng., 2021, vol. 7, pp. 1184–1205.

    Article  Google Scholar 

  7. Prakash, P. and Velmurugan, V., Parameters influencing the productivity of solar stills—A review, Renewable Sustainable Energy Rev., 2015, vol. 49, pp. 585–609.

    Article  Google Scholar 

  8. Sivakumar, V. and Sundaram, E.G., Improvement techniques of solar still efficiency: A review, Renewable Sustainable Energy Rev., 2013, vol. 28, pp. 246–264.

    Article  Google Scholar 

  9. Kabeel, A.E. and El-Agouz, S.A., Review of researches and developments on solar stills, Desalination, 2011, vol. 276, pp. 1–12.

    Article  Google Scholar 

  10. Badran, O.O., Experimental study of the enhancement parameters on a single slope solar still productivity, Desalination, 2007, vol. 209, pp. 136–143.

    Article  Google Scholar 

  11. Tiwari, G.N., Singh, H.N., and Tripathi, R., Present status of solar distillation, Sol. Energy, 2003, vol. 75, pp. 367–373.

    Article  Google Scholar 

  12. Tiwari, A.K. and Tiwari, G.N., Effect of water depths on heat and mass transfer in a passive solar still: in summer climatic condition, Desalination, 2006, vol. 195, pp. 78–94.

    Article  Google Scholar 

  13. Shalaby, S.M., El-Bialy, E., and El-Sebaii, A.A., An experimental investigation of a v-corrugated absorber single-basin solar still using PCM, Desalination, 2016, vol. 398, pp. 247–255.

    Article  Google Scholar 

  14. Esteban, C., Franco, J., and Fasulo, A., Construction and performance of an assisted solar distiller, Desalination, 2005, vol. 173, pp. 249–255.

    Article  Google Scholar 

  15. Abu-Arabi, M., Zurigat, Y., Al-Hinai, H., and Al-Hiddabi, S., Modeling and performance analysis of a solar desalination unit with double-glass cover cooling, Desalination, 2002, vol. 143, pp. 173–182.

    Article  Google Scholar 

  16. Deshmukh, K.B. and Karmare, S.V., A review on convective heat augmentation techniques in solar thermal collector using nanofluid, J. Therm. Eng., 2021, vol. 7, pp. 1257–1266.

    Article  Google Scholar 

  17. Rai, S.N., Dutt, D.K., and Tiwari, G.N., Some experimental studies of a single basin solar still, Energy Convers. Manage., 1990, vol. 30, pp. 149–153.

    Article  Google Scholar 

  18. Yadav, Y.P., Analytical performance of a solar still integrated with a flat plate solar collector: Thermosiphon mode, Energy Convers. Manage., 1991, vol. 31, pp. 255–263.

    Article  Google Scholar 

  19. Velmurugan, V. and Srithar, K., Performance analysis of solar stills based on various factors affecting the productivity—A review, Renewable Sustainable Energy Rev., 2011, vol. 15, pp. 1294–1304.

    Article  Google Scholar 

  20. Zaki, G.M., Radhwan, A.M., and Balbeid, A.O., Analysis of assisted coupled solar stills, Sol. Energy, 1993, vol. 51, pp. 277–288.

    Article  Google Scholar 

  21. Rai, S.N. and Tiwari, G.N., Single basin solar still coupled with flat plate collector, Energy Convers. Manage., 1983, vol. 2, pp. 145–149.

    Article  Google Scholar 

  22. Rai, S.N., Dutt, D.K., and Tiwari, G.N., Some experimental studies of single basin solar still, Energy Convers. Manage., 1990, vol. 30, pp. 149–153.

    Article  Google Scholar 

  23. Rahmani, A., Boutriaa, A., and Hadef, A., An experimental approach to improve the basin type solar still using an integrated natural circulation loop, Energy Convers. Manage., 2015, vol. 93, pp. 298–308.

    Article  Google Scholar 

  24. Sarhaddi, F., Tabrizi, F.F., Zoori, H.A., and Mousavi, S.A.H.S., Comparative study of two weir type cascade solar stills with and without PCM storage using energy and exergy analysis, Energy Convers. Manage., 2017, vol. 133, pp. 97–109.

    Article  Google Scholar 

  25. Deshmukh, H.S. and Thombre, S.B., Solar distillation with single basin solar still using sensible heat storage materials, Desalination, 2017, vol. 410, pp. 91–98.

    Article  Google Scholar 

  26. Nagarajan, P.K., Mageshbabu, D., Bharathwaaj, R., and Muthu Manokar, A., Exergy analysis of solar still with sand heat energy storage, Appl. Sol. Energy, 2018, vol. 54, pp. 173–177.

    Article  Google Scholar 

  27. Avezov, R.R., Avezova, N.R., Vokhidov, A.U., Rakhimov, E.Yu., and Usmonov, N.O., Influence of meteorological factors on the thermal loss coefficient of light-absorbing heat exchange panels of flat-plate solar water heating collectors through transparent coatings of their casings, Appl. Sol. Energy, 2018, vol. 54, pp. 406–412.

    Article  Google Scholar 

  28. Avezova, N.R., Avezov, R.R., Vokhidov, A.U., Rakhimov, E.Yu., and Gaziev, U.Kh., Influence of ambient temperature, wind speed, emissivity, and average working temperature of light-absorbing heat-exchange panels of flat-plate solar water-heating collectors on their thermal losses through translucent coatings, Appl. Sol. Energy, 2019, vol. 55, pp. 30–35.

    Article  Google Scholar 

  29. Dev, R. and Tiwari, G.N., Characteristic equation of the inverted absorber solar still, Desalination, 2011, vol. 269, pp. 67–77.

    Article  Google Scholar 

  30. Tiwariand, G.N., Effect of water depth on daily yield of the still, Desalination, 1987, vol. 61, pp. 67–75.

    Article  Google Scholar 

  31. Tripathi, R. and Tiwari, G.N., Effect of water depth on internal heat and mass transfer for active solar distillation, Desalination, 2005, vol. 173, pp. 187–200.

    Article  Google Scholar 

  32. National Meteorological Office, Climatological Summaries Year 2010–2019, Climatological Division of Ouargla-Algeria.

Download references

Funding

The General Directorate for Scientific Research and Technological Development (DGRST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chelgham.

Ethics declarations

The authors declare that they have no conflicts of interest.

Appendix A

Appendix A

In Eqs. (1)–(3) different heat transfer and heat transfer coefficients are follows:

$${{Q}_{{{\text{r,w}} - {\text{g}}}}} = {{h}_{{{\text{r,g}} - {\text{a}}}}}~{{A}_{{\text{g}}}}~\left( {{{T}_{{\text{g}}}} - {{T}_{{{\text{sky}}}}}} \right),$$

where \({{h}_{{{\text{r,g}} - {\text{a}}}}} = {{\varepsilon }_{{\text{g}}}}~\sigma ~\left( {T_{{\text{g}}}^{4} - T_{{{\text{sky}}}}^{4}} \right) = 0.9~\sigma ~\left( {T_{{\text{g}}}^{4} - T_{{{\text{sky}}}}^{4}} \right),~\)

$${{T}_{{{\text{sky}}}}} = {{T}_{{\text{a}}}} - 6,$$
$${{Q}_{{{\text{c,g}} - {\text{a}}}}} = {{h}_{{{\text{c,g}} - {\text{a}}}}}~{{A}_{{\text{g}}}}~\left( {{{T}_{{\text{g}}}} - {{T}_{{\text{a}}}}} \right),$$
$$~{{h}_{{{\text{c}},{\text{g}} - {\text{a}}}}} = 2.8 + 3V,\,\,\,\,V~ \leqslant 5\,\,{{\text{m}} \mathord{\left/ {\vphantom {{\text{m}} {\text{s}}}} \right. \kern-0em} {\text{s}}},$$
$${{Q}_{{{\text{r}},{\text{w}} - {\text{g}}}}} = {{\varepsilon }_{{\text{w}}}}~\sigma ~~\left( {T_{{\text{w}}}^{4} - T_{{\text{g}}}^{4}} \right) = 0.9~\sigma ~~\left( {T_{{\text{w}}}^{4} - T_{{\text{g}}}^{4}} \right),$$
$${{Q}_{{{\text{c}},{\text{w}} - {\text{g}}}}} = {{h}_{{c,{\text{w}} - {\text{g}}}}}~~{{A}_{{\text{g}}}}~\left( {{{T}_{{\text{w}}}} - {{T}_{{\text{g}}}}} \right),$$
$${{h}_{{{\text{c}},{\text{w}} - {\text{g}}}}} = 0.884{{\left[ {\left( {{{T}_{{\text{w}}}} - {{T}_{{\text{g}}}}} \right)\, + \,\frac{{\left( {{{P}_{{\text{w}}}} - {{P}_{{\text{g}}}}} \right)\left( {{{T}_{{\text{w}}}} + 273.15} \right)}}{{268.9 \times {{{10}}^{3}} - {{P}_{{\text{w}}}}}}} \right]}^{{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-0em} 3}}}},$$
$${{Q}_{{{\text{ev}},{\text{w}} - {\text{g}}}}} = {{h}_{{{\text{ev}},{\text{w}} - {\text{g}}}}}~{{A}_{{\text{b}}}}~\left( {{{T}_{{\text{w}}}} - {{T}_{{\text{g}}}}} \right),$$
$${{h}_{{{\text{ev}},{\text{w}} - {\text{g}}}}} = 16.273 \times {{10}^{{ - 3}}}~{{h}_{{{\text{c,w}} - {\text{g}}}}}~~\frac{{{{p}_{{\text{w}}}} - {{p}_{{\text{g}}}}}}{{{{T}_{{\text{w}}}} - {{T}_{{\text{g}}}}}},$$
$$~{{Q}_{{{\text{c,b}} - {\text{w}}}}} = {{h}_{{{\text{c,b}} - {\text{w}}}}}~~{{A}_{{\text{b}}}}~\left( {{{T}_{{\text{b}}}} - {{T}_{{\text{w}}}}} \right)~,$$
$${{h}_{{{\text{c}},{\text{b}} - {\text{w}}}}} = 0.54~\frac{{{{K}_{{\text{w}}}}~{\text{R}}{{{\text{a}}}^{{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0em} 4}}}}}}{{{{L}_{{\text{w}}}}}}~,\,\,\,\,~{{10}^{4}} < ~{\text{Ra}} < {{10}^{7}}.$$

In conventional solar still

$${{Q}_{{{\text{ev}}}}} = ~~{{Q}_{{{\text{r}},{\text{b}} - {\text{a}}}}} + ~\,\,{{Q}_{{{\text{c}},{\text{b}} - {\text{a}}}}},$$
$${{Q}_{{{\text{r}},{\text{b}} - {\text{a}}}}} = {{\varepsilon }_{{{\text{iso}}}}}\sigma \left( {T_{{\text{b}}}^{4} - T_{{\text{a}}}^{4}} \right) = 0.11\sigma \left( {T_{{\text{b}}}^{4} - T_{{\text{a}}}^{4}} \right),~$$
$${{Q}_{{{\text{c,b}} - {\text{a}}}}} = {{h}_{{{\text{c}},{\text{b}} - {\text{a}}}}}\left( {{{T}_{{\text{b}}}} - {{T}_{{\text{a}}}}} \right),$$
$${{Q}_{{{\text{loss}}{-}{{{\text{b}}}_{1}}}}} = {{U}_{{{{{\text{b}}}_{1}}}}}\left( {{{T}_{{\text{b}}}} - {{T}_{{\text{a}}}}} \right)~{\kern 1pt} ,$$

where,

$${{U}_{{{{{\text{b}}}_{1}}}}} = {{\left( {\frac{{{{e}_{1}}}}{{{{k}_{1}}}} + \frac{{{{e}_{2}}}}{{{{k}_{2}}}} + \frac{{{{e}_{3}}}}{{{{k}_{3}}}}} \right)}^{{ - 1}}}.$$

Then

$${{Q}_{{{\text{loss}}{-} {\text{Total }}_1}}} = \,\,~{{Q}_{{{\text{r}},{\text{g}} - {\text{a}}}}} + ~{{Q}_{{{\text{c}},{\text{g}} - {\text{a}}}}} + ~{{Q}_{{{\text{loss1}}}}} + {{Q}_{{{\text{r,b}} - {\text{a}}}}} + {{Q}_{{c,{\text{b}} - {\text{a}}}}}.$$

In modifier solar still with collector

$${{Q}_{{{\text{r,b}} - {\text{a}}}}} = {{\varepsilon }_{{{\text{iso}}}}}\sigma \left( {T_{{\text{b}}}^{4} - T_{{{\text{col}}{{{\text{l}}}_{{\left( {{\text{moy}}} \right)}}}}}^{4}} \right) = 0.11\sigma \left( {T_{{\text{b}}}^{4} - T_{{{\text{col}}{{{\text{l}}}_{{\left( {{\text{moy}}} \right)}}}}}^{4}} \right)\,,$$

where,

$${{T}_{{{\text{col}}{{{\text{l}}}_{{\left( {{\text{moy}}} \right)}}}}}} = \frac{{{{T}_{{{\text{coll1}}}}} + {{T}_{{{\text{coll2}}}}}}}{2},$$
$${{Q}_{{{\text{c}},{\text{b}} - {\text{a}}}}} = {{h}_{{{\text{c}},{\text{b}} - {\text{a}}}}}\left( {{{T}_{{\text{b}}}} - {{T}_{{{\text{col}}{{{\text{l}}}_{{\left( {{\text{moy}}} \right)}}}}}}} \right),$$
$${{Q}_{{{\text{loss}}{-}{{{\text{b}}}_{2}}}}} = {{U}_{{{{{\text{b}}}_{{\text{2}}}}}}}\left( {{{T}_{{\text{b}}}} - {{T}_{{{\text{col}}{{{\text{l}}}_{{\left( {{\text{moy}}} \right)}}}}}}} \right),$$

where,

$$~{{U}_{{{{{\text{b}}}_{{\text{2}}}}}}} = {{\left( {\frac{{{{e}_{1}}}}{{{{k}_{1}}}} + \frac{{{{e}_{2}}}}{{{{k}_{2}}}} + \frac{{{{e}_{3}}}}{{{{k}_{3}}}}} \right)}^{{ - 1}}}.$$

Then

$${{Q}_{{{\text{loss}{-}\text{Total}}{}_{{\text{2}}}}}} = ~\,\,{{Q}_{{{\text{r}},{\text{g}} - {\text{a}}}}} + \,\,~{{Q}_{{{\text{c}},{\text{g}} - \text{a}}}}.$$

The following are the saturated vapour pressure expressions as a function of temperature (°C).

$$P\left( T \right) = \exp \left( {25.317 - \frac{{5144}}{{T + 273.15}}} \right).$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelgham, M., Belhadj, M.M., Chelgham, F. et al. Experimental Investigation of a Single-Slope Basin Still with a Built-in Additional Flat-Plate Solar Air Collector. Appl. Sol. Energy 58, 250–258 (2022). https://doi.org/10.3103/S0003701X22020049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X22020049

Keywords:

Navigation