Skip to main content
Log in

Feasibility Study of a 200 kW Solar Wind Hybrid System

  • RENEWABLE ENERGY SOURCES
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

This paper presents the feasibility study of a 200 kW solar wind hybrid power system augmented with battery storage system for electricity production which is intended for satisfying the load demand of newly constructed building at the location of Uttarakhand State council for science and technology. The sole purpose of this paper is to identify the prospects of the recognized hybrid system and to optimize the system using HOMER (hybrid optimization model for electric renewables) software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Mondal, A.K. and Bansal, K., A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels, Adv. Robotics, 2015, vol. 29, pp. 515–524.

    Article  Google Scholar 

  2. Mondal, A.K., Mondal, S., Devalla, V., et al., Advances in floating aerogenerators: present status and future, Int. J. Precis. Eng. Manuf., 2016, vol. 17, pp. 1555–1568.

    Article  Google Scholar 

  3. Ashwani Kumar, K.K., Naresh, K., Satyawati, Sh., et al., Renewable energy in India: current status and future potentials, Renewable Sustainable Energy Rev., 2010, vol. 14, pp. 2435–2450.

    Google Scholar 

  4. Agrawal, B. and Tiwari, G., Return on capital and earned carbon credit by hybrid solar Photovoltaic-wind turbine generators, Appl. Sol. Energy, 2010, vol. 46, pp. 33–45.

    Article  Google Scholar 

  5. Glovatskii, O.Y., Ergashev, R., Bekchanov, F., et al., Hybrid installations in pumping stations based on the use of renewable energy sources, Appl. Sol. Energy, 2012, vol. 48, pp. 266–268.

    Article  Google Scholar 

  6. Yang, H., Wei, Z., and Chengzhi, L., Optimal design and techno-economic analysis of a hybrid solar-wind power generation system, Appl. Energy, 2009, vol. 86, pp. 163–169.

    Article  Google Scholar 

  7. Bilal, B.O., Sambou, V., Ndiaye, P., et al., Optimal design of a hybrid solar-wind-battery system using the minimization of the annualized cost system and the minimization of the loss of power supply probability (LPSP), Renewable Energy, 2010, vol. 35, pp. 2388–2390.

    Article  Google Scholar 

  8. Das, D., Esmaili, R., Xu, L., and Nichols, D., An optimal design of a grid connected hybrid wind/photovoltaic/fuel cell system for distributed energy production, in Industrial Electronics Society, IECON-2005, Proceedings of the 31st IEE Annual Conference, p. 6.

  9. Pillai, I.R. and Banrjee, R., Renewable energy in India: status and potential, Energy, 2009, vol. 34, pp. 971–977.

    Article  Google Scholar 

  10. Khedkar, M.K., Alternative energy facilities based on site matching and generation unit sizing, Renewable Energy, 2007, vol. 32, pp. 1346–1362.

    Article  Google Scholar 

  11. Pragya Nema, S.D., Feasibility Study of a 1 mW Standalone Hybrid Energy System: For Technical Institutes, Scientific Research Publ., 2012, pp. 1–2.

    Google Scholar 

  12. Sandhu, S., Hybrid wind/photovoltaic energy system developments: critical review and findings, Renewable Sustainable Energy Rev., 2015, pp. 1135–1147.

  13. Uttarakhand, V.D., State Council for Science and Technology (UCOST). www.google.com/maps/search/ vigyaan+dham/30.3374476,77.9192212,620m/data= !3m1!1e3?authuser=1 http://ucost.in/. Accessed August 30, 2018.

  14. Pyloudi, E., Papantoniou, S., and Kolokotsa, D., Retrofitting an office building towards a net zero energy building, Adv. Build. Energy Res., 2015, vol. 9, pp. 20–33.

    Article  Google Scholar 

  15. Ajao, K.R., Using HOMER power optimization software for cost benefit analysis of hybrid-solar power generation relative to utility cost in Nigeria, Int. J. Res. Rev. Appl. Sci., 2011, pp. 96–102.

  16. Nand, R.T. and Raturi, A., Feasibility study of a grid connected photovoltaic system for the central region of Fiji, Appl. Sol. Energy, 2013, vol. 49, p. 110.

    Article  Google Scholar 

  17. Reddy, V. and Raturi, A., Optimization and sensitivity analysis of a PV/wind/diesel hybrid system for a rural community in the Pacific, Appl. Sol. Energy, 2010, vol. 46, pp. 152–156.

    Article  Google Scholar 

  18. Zhou, W., Lou, C., Li, Z., et al., Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems, Appl. Energy, 2010, vol. 87, pp. 380–389.

    Article  Google Scholar 

  19. Mehta, C.R., Feasibility study of a solar-wind hybrid system, Int. J. Emerg. Technol. Adv. Eng., 2012, vol. 2, pp. 2–3.

    Google Scholar 

  20. Kassam, A., Mobile for Development. http://www. gsma.com/mobilefordevelopment/wp-content/uploads/ 2012/06/HOMER-Software-Training-Guide-June-2011.pdf.

  21. Ahuja, D. and Tatsutani, M., Sustainable energy for developing countries, Surv. Persp. Integr. Environ. Soc.: SAPI EN. S., 2009.

  22. Dufo-López, R., Design and control strategies of PV-diesel systems using genetic algorithms, Sol. Energy, 2005, pp. 33–46.

  23. Onojo, O.J., Okafor, E.N.C., and Ogbogu, S.O.E., Feasibility investigation of a hybrid renewable energy system as a back-up power supply for an ICT building in Nigeria, Acad. Res. Int., 2013, vol. 4, pp. 162–164.

    Google Scholar 

  24. National Stock Exchange India. nseindia.com. Accessed 2015.

  25. Li, Z.X.-J., Cao, C-H., Sui, G-Y., and Hu, S., Dynamic modeling and sizing optimization of stand-alone photovoltaic power systems using hybrid energy storage technology, Renewable Energy, 2009, vol. 32, no. 3, pp. 815–826.

    Article  Google Scholar 

  26. Dufo-López, R., Bernal-Agustin, J.L., Yusta-Loyo, J.M., et al., Multi-objective optimization minimizing cost and life cycle emissions of stand-alone PV-wind-diesel systems with batteries storage, Appl. Energy, 2011, vol. 88, pp. 4033–4041.

    Article  Google Scholar 

  27. Dufo-López, R. and Bernal-Agustín, J.L., Design and control strategies of PV-Diesel systems using genetic algorithms, Solar Energy, 2005, vol. 79, pp. 33–46.

    Article  Google Scholar 

  28. Aeidapu Mahesh, K.S.S., Hybrid wind/photovoltaic energy system developments: critical review and findings, Renewable Sustainable Energy Rev., 2015, pp. 1135–1147.

  29. Dufo-López, R.J.C., Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage, Renewable Energy, 2007, vol. 32, pp. 1102–1104.

    Article  Google Scholar 

  30. Klychev, S.I., Mukhammadiev, M., Nizamov, O.K., et al., Method for calculating the power of combined autonomous electric power plants, Appl. Solar Energy, 2014, vol. 50, pp. 196–201.

    Article  Google Scholar 

  31. Salami, T., Matlab/Simulink based modelling of solar photovoltaic cell, Int. J. Renewable Energy Res., 2012, vol. 2.

    Google Scholar 

  32. Treacy, M. http://www.ecogeek.org/wind-power/3555- caltech-study-saysvertical-axis-wind-turbines-10x.

  33. Kalantar, G.S.M.M.M., Dynamic behaviour of standalone Hybrid power generation system of wind turbine, microturbine, solar array and battery storage, Appl. Energy, 2010, vol. 87, pp. 3051–3064.

    Article  Google Scholar 

  34. Wijewardana, S., Research and development in Hybrid Renewable energy systems, Int. J. Emerg. Technol. Adv. Eng., 2014, vol. 4, pp. 51–52.

    Google Scholar 

  35. Bauer, L.E.W.P. and Raijen, E., Standalone microgrids, in Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC 2011), Amsterdam, Netherlands, Oct. 9–13, 2011, IEEE, 2011.

  36. Sukamongkol, S.C.O.Y., A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads, Renewable Energy, 2002, vol. 27, pp. 237–258.

    Article  Google Scholar 

  37. Deshmuk, M.K., Modeling of hybrid renewable energy systems, Renewable Sustainable Energy Rev., 2008, vol. 12, p. 235–249.

    Article  Google Scholar 

  38. Potamianakis, C.D.V.E.G., Modeling and simulation of small hybrid power systems, in Proceedings of the IEEE Power Tech Conference, Bologna, 2003, pp. 7803–7967.

  39. Shen, H. and Liao, X., Computer-aided design of PV/Wind Hybrid system, Renewable Energy, 2003, vol. 28, pp. 1491–1512.

    Article  Google Scholar 

  40. Safari, S. et al., Energy Convers. Manage., 2013, vol. 65, pp. 41–49.

    Article  Google Scholar 

  41. Mousavi, S.M. et al., Energy management of Wind/Pv and battery hybrid system with consideration of memory effect in battery, in Proceedings of the IEEE International Conference on Clean Electrical Power, Italy, IEEE, 2009, pp. 630–633.

  42. Meenakshi, K.R.S. et al., Intelligent controller for a standalone hybrid generation system, in Proceedings of the Power Electronics and Motion Control Conference, IEEE, 2006.

  43. Liang, W. and Littler, T., Modal extraction for wind turbines using moving window subspace identification, in Proceedings of the 2009 International Conference on Sustainable Power Generation and Supply, 2009, pp. 1–9.

  44. Iqbal, M.T., Dynamic modelling and simulation of a small wind-fuel cell hybrid energy system, Renewable Energy, 2004, vol. 30, pp. 421–439.

    Google Scholar 

  45. Shiyas, P.R. and Ashok, S., Fuzzy controlled dual input DC/DC converter for Solar-PV/Wind hybrid energy system, in Proceedings of the IEEE Students’ Conference on Electrical, Electronics and Computer Science, 2012.

  46. Meenakshi, K.R.S. et al., Intelligent controller for a standalone hybrid generation system, in Proceedings of the Power Electronics and Motion Control Conference, IEEE, 2006.

  47. Delimustafic, J.I.D. et al., Model of a hybrid renewable energy system: control, supervision and energy distribution, in Proceedings of the International Symposium on Industrial Electronics, IEEE, 2011, pp. 1081–1086.

  48. Sankarganesh, S.T.R., Maximum power point tracking in PV system using intelligence based P & O technique and hybrid Cuk converter, in Proceedings of the IEEE International Conference on Emerging Trends in Science, Engineering and Technology, 2012, pp. 429–436.

  49. Kabalci, E., Design and analysis of hybrid renewable energy plant with solar and wind power, Energy Convers. Manage., 2013, vol. 72, pp. 51–59.

    Article  Google Scholar 

  50. Haruni, A.M.O., A novel operation and control strategy for a standalone hybrid renewable power system, IEEE Trans. Sustainable Energy, 2013, vol. 4.

    Google Scholar 

  51. Liang, T.L.W., Modal Extraction for wind turbines using moving window subspace identification, in Proceedings of the International Conference on Sustainable Power Generation and Supply, 2009, pp. 1–9.

  52. Mtshali, T.R. and Chowdhury, S., Simulation and modelling of PV-Wind-Battery hybrid power system, in Proceedings of the 2011 IEEE Power and Energy Society General Meeting, July 24–28, 2011, Detroit, MI, IEEE, 2011.

  53. Koutroulis Eftichios, K.D., Potirakis, A., and Kalaitzakis, K., Methodology for optimal sizing of standalone photovoltaic/wind generator systems using genetic algorithms, Solar Energy, 2006, vol. 9, pp. 1072–1088.

    Article  Google Scholar 

  54. Bekele Getachew, P.B., Feasibility study for a standalone solar wind based hybrid energy system for application in Ethiopia, Appl. Energy, 2010, vol. 2, pp. 487–495.

    Article  Google Scholar 

  55. Botsaris, P. and Filippidou, F., Estimation of the energy payback time (EPR) for a PV module installed in North Eastern Greece, Appl. Solar Energy, 2009, vol. 45, p. 166–175.

    Article  Google Scholar 

  56. Filippidou, F., Botsaris, P., Angelakoglou, K., et al., A comparative analysis of a cdte and a poly-Si photovoltaic module installed in North Eastern Greece, Appl. Solar Energy, 2010, vol. 46, pp. 182–191.

    Article  Google Scholar 

  57. Essabbani, T., Moufekkir, F., Mezrhab, A., et al., Numerical computation of thermal performance of a simulation of a solar domestic hot water system, Appl. Solar Energy, 2015, vol. 51, pp. 22–33.

    Article  Google Scholar 

  58. Himri, Y. and Draoui, B., Prospects of Wind farm development in Algeria, Desalination, 2009, vol. 13, pp. 130–138.

    Article  Google Scholar 

  59. Dufo-López, R., Yusta-Loyo, J.M., Domínguez-Navano, J.A., et al., Multi objective optimization minimizing cost and lifecycle emissions of standalone PV/wind/diesel systems with batteries storage, Appl. Energy, 2011, vol. 11, pp. 4033–4041.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Mondal.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeffy Johnson, Mondal, S., Mondal, A.K. et al. Feasibility Study of a 200 kW Solar Wind Hybrid System. Appl. Sol. Energy 54, 376–383 (2018). https://doi.org/10.3103/S0003701X18050080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X18050080

Keywords:

Navigation