Phase equilibria in the NiX–La₂ X_3 –Ga(In)₂ X_3 (X = S, Se) systems and crystal structure of the La₃NiGaS₇ compound

Nazar BLASHKO¹*, Ivan OLEKSEYUK¹, Anatoliy FEDORCHUK², Oleg MARCHUK¹

¹ Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, 43025 Lutsk, Ukraine

² Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St. 50, 79010 Lviv, Ukraine

* Corresponding author. Tel.: +380-95-1530833; e-mail: blashko.nazar@yandex.ua

Received September 23, 2016; accepted December 28, 2016; available on-line April 1, 2018

The isothermal sections of the quasi-ternary NiX-La₂X₃-Ga(In)₂X₃ (X = S, Se) systems at 770 K were constructed using X-ray diffraction. The crystal structure of the quaternary compound La₃NiGaS₇ (structure type La₃MnGaS₇, Pearson symbol *hP24*, space group *P6₃*, *a* = 1.01605(4), *c* = 0.60397(3) nm, *R_I* = 0.0856, $R_p = 0.1897$) was determined by X-ray powder diffraction.

Rare-earth elements / X-ray powder diffraction / Crystal structure

Introduction

Chalcogenide systems have been intensively studied in recent years to find new materials for infrared and non-linear optics. The study of phase equilibria and crystal structures of compounds in the quasi-ternary systems NiX–La₂X₃–Ga(In)₂X₃ (X = S, Se) will provide clarification of the nature of the chemical interaction of the components in systems of a similar type and the conditions of formation and existence of new phases that will constitute valuable information in the search for new promising materials.

Here we present the results of an investigation of the phase equilibria in the quasi-ternary systems NiX-La₂ X_3 -Ga(In)₂ X_3 (X = S, Se) at 770 K.

The components of the investigated systems are binary semiconductor compounds, the crystal structures of which have been studied in detail and reported in the literature (Table 1).

Literature sources also report information on the formation of compounds in the boundary binary systems (Table 2).

Experimental

The samples were synthesized from elements of at least 99.99 wt.% purity in quartz containers in an MP-30 programmable electric muffle furnace. The containers were evacuated to a residual pressure of 10^{-2} Pa and sealed in the flame of an oxygen-gas

burner. The samples were synthesized by: 1) heating the mixture to 870 K at the rate of 30 K/h; 2) exposure for 100 h; 3) heating to 1370 K at the rate of 12 K/h; 4) exposure for 2 h; 5) cooling to 770 K at the rate of 12 K/h; 6) homogenizing annealing for 500 h. After having reached the equilibrium state, the samples were quenched into room-temperature water.

X-ray diffraction patterns for phase analysis were recorded on a DRON 4-13 diffractometer in the 2θ range 10-80° (Cu K α radiation, scan step 0.05°, 4 s exposure at each point). Data processing and the determination of the crystal structure utilized the WinCSD software package [32].

Result and discussion

The existence of ten ternary compounds was confirmed in the boundary binary systems of the investigated quasi-ternary systems at the annealing temperature. These are La₄NiS₇ (space group *I*4/*mmm*), La₃Ga_{1.67}S₇ (*P*6₃), LaGaS₃ (*Pna2*₁), NiGa₂S₄ (*P*-3*m*1), La₃Ga_{1.67}Se₇ (*P*6₃), La₃InS₆ (*P2*₁2₁2₁), La₃In_{1.67}S₇ (*P*6₃), La₄In_{4.67}S₁₃ (*Pbam*), La₃In_{1.67}Se₇ (*P*6₃), and La₄In_{4.67}Se₁₃ (*Pbam*).

We have determined the existence of a new quaternary compound, La₃NiGaS₇, in the quasi-ternary system NiS–La₂S₃–Ga₂S₃ (La₃MnGaS₇ structure type [33]). This compound crystallizes with hexagonal symmetry (space group $P6_3$) and the unit cell parameters a = 1.01605(4) nm and c = 0.60397(3) nm.

N. Blashko *et al.*, Phase equilibria in the NiX–La₂ X_3 –Ga(In)₂ X_3 (X = S, Se) systems and crystal structure ...

Compound	Structure type	Space group	Cell parameters (nm)			
			а	b	С	
La_2S_3	La ₂ S ₃	Pnma	0.766	0.422	1.588	[1]
La_2S_3	_	Fd-3m	2.046	_	_	[2]
La_2S_3	Th_3P_4	I-43d	0.8723	_	_	[3]
La_2Se_3	Th_3P_4	I-43d	0.90521	_	_	[4]
NiS	NiS	R3m	0.96071	_	0.31434	[5]
NiS	NiAs	P6 ₃ /mmc	0.34395	_	0.53514	[6]
NiSe	NiAs	P6 ₃ /mmc	0.3661	_	0.5356	[7]
Ga_2S_3	Ga ₂ S ₃	Bb	1.1094	0.9578	0.6395 $\gamma = 141.15^{\circ}$	[8]
Ga_2S_3	Ga_2S_3	<i>P</i> 6 ₁	0.6385	_	1.8040	[9]
Ga_2S_3	Ga ₂ S ₃	Сс	1.1107	0.6395 $\beta = 121.17^{\circ}$	0.7021	[10]
Ga ₂ Se ₃	Ga ₂ S ₃	Сс	0.666	$\beta = 108.12^{\circ}$	0.666	[11]
Ga ₂ Se ₃	Ga ₂ Se ₃	F-43m	0.5463	-	_	[12]
In_2S_3	In_2S_3	$I4_1/amd$	0.7623	_	3.236	[13]
In_2S_3	MgAl ₂ O ₄	Fd-3m	1.0728	_	_	[14]
In_2S_3	In_2S_3	<i>P</i> -3 <i>m</i> 1	0.3806	_	0.9044	[15]
In_2Se_3	In ₂ Se ₃	<i>R</i> -3 <i>m</i>	0.4025	_	2.8762	[16]
In_2Se_3	Al_2S_3	<i>P</i> 6 ₁	0.71286	_	1.9381	[17]
In_2Se_3	Al_2S_3	<i>P</i> 6 ₅	0.711	_	1.93	[18]
In ₂ Se ₃	Al_2S_3	<i>P</i> 6 ₃	1.600	_	1.924	[19]

Table 1 Crystallographic data for the binary compounds.

The results presented here are part of a systematic investigation of the quasi-ternary systems $AX-R_2X_3$ -Ga(In)₂ X_3 (where A = d-element, R = rareearth element, X = S, Se) [34-36]. The corresponding quasi-binary boundary systems exhibit a decreasing number of ternary compounds within the S \rightarrow Se series. On the contrary the number of ternary compounds increases within the Ga \rightarrow In series. Among the studied systems, a quaternary compound only exists in the NiS-La₂S₃-Ga₂S₃ system.

The indium-containing quasi-binary systems $NiS(Se)-In_2S(Se)_3$ feature large solid solution ranges of $In_2S(Se)_3$. The maximum solubility of NiS in the NiS-In_2S₃ system is 30 mol.% and the solid solubility in the selenium-containing system is 25 mol.% NiSe.

Isothermal sections of the investigated systems were constructed from the results of the phase analysis (Figs. 1-4).

The analysis of the hkl indices and the intensity of the reflections indicate that the structure of the

La₃NiGaS₇ compound is likely to belong to the La₃MnGaS₇ structure type [33]. Experimental details and crystallographic data of La₃NiGaS₇ are presented in Table 3. Refinement of the atom coordinates and isotropic displacement parameters (Table 4) in this model yielded satisfactory values of the reliability factors. Experimental, calculated and differential diffraction patterns of the La₃NiGaS₇ compound are presented in Fig. 5.

The interatomic distances agree well with the sum of the ionic radii (Fig. 6). A projection of the unit cell and the coordination polyhedra of the La, Ni, Ga, S1, S2, and S3 atoms in the La_3NiGaS_7 structure are shown in Figs. 7,8. The surrounding of the La atoms are trigonal prisms with one additional atom, formed by 7 S atoms. The Ni atoms are located at the center of octahedra, and the Ga atoms inside tetrahedra of sulfur atoms. The S1 and S3 atoms also have tetrahedral surrounding, whereas the S2 atoms are surrounded by 5 neighbors.

Compound	Structure type	Space group	Cell parameters (nm)			
			а	b	С	Kel.
La ₄ NiS ₇	La ₄ NiS ₇	I4/mmm	0.40801	_	1.6334	[20]
La_4NiS_7	La ₃ CuSiS ₇	<i>P</i> 6 ₃	1.0264	_	0.5744	[21]
NiGa ₂ S ₄	FeGa ₂ S ₄	P-3m1	0.36249	_	1.19956	[22]
LaGaS ₃	LaGaS ₃	$P2_{1}/c$	1.517	1.056 $\beta = 137.70^{\circ}$	1.282	[23]
$LaGaS_3$	Ag ₈ SiS ₆	$Pna2_1$	1.04045	2.19835	0.60565	[24]
$La_3Ga_{1.67}S_7$	La ₃ CuSiS ₇	<i>P</i> 6 ₃	1.015	_	0.608	[25]
La ₃ Ga _{1.67} Se ₇	La ₃ CuSiS ₇	<i>P</i> 6 ₃	1.067	_	0.610	[26]
La ₃ InS ₆	La ₃ InS ₆	P2 ₁ 2 ₁ 2 ₁	1.6912	1.3946	0.4079	[27]
$La_3In_{1.67}S_7$	La ₃ CuSiS ₇	<i>P</i> 6 ₃	1.01963	_	0.62792	[28]
$La_4In_{4.67}S_{13}$	$Nd_4In_5S_{13}$	Pbam	2.1280	1.1795	0.40380	[29]
$La_3In_{1.67}Se_7$	$Ce_3Al_{1.67}S_7$	<i>P</i> 6 ₃	1.050	_	0.650	[30]
$La_4In_{4.67}Se_{13}$	$Nd_4In_5S_{13}$	Pbam	1.2442	2.2146	0.41969	[31]

 Table 2 Crystallographic data for the ternary compounds.

Fig. 2

 $\begin{array}{l} \textbf{Isothermal section of the NiS-La_2S_3-Ga_2S_3 system at 770 K: } 1-La_2S_3; 2-NiS; 3-Ga_2S_3; 4-La_4NiS_7; 5-NiGa_2S_4; 6-LaGaS_3; 7-La_3Ga_{1.67}S_7; 8-La_2S_3+La_4NiS_7; 9-NiS+La_4NiS_7; 10-NiS+NiGa_2S_4; \\ 11-Ga_2S_3+NiGa_2S_4; 12-Ga_2S_3+LaGaS_3; 13-LaGaS_3+La_3Ga_{1.67}S_7; 14-La_2S_3+La_3Ga_{1.67}S_7; \\ 15-La_2S_3+La_3NiGaS_7; 16-La_4NiS_7+La_3NiGaS_7; 17-La_3Ga_{1.67}S_7+La_3NiGaS_7; 18-LaGaS_3+La_3NiGaS_7; \\ 19-NiS+La_3NiGaS_7; 20-NiGa_2S_4+La_3NiGaS_7; 21-NiGa_2S_4+LaGaS_3; 22-La_2S_3+La_4NiS_7+La_3NiGaS_7; \\ 23-La_2S_3+La_3Ga_{1.67}S_7+La_3NiGaS_7; 24-LaGaS_3+La_3Ga_{1.67}S_7+La_3NiGaS_7; 25-NiS+La_4NiS_7+La_3NiGaS_7; \\ 26-LaGaS_3+NiGa_2S_4+La_3NiGaS_7; 27-NiS+NiGa_2S_4+La_3NiGaS_7; 28-Ga_2S_3+NiGa_2S_4+LaGaS_3. \\ \end{array}$

N. Blashko *et al.*, Phase equilibria in the NiX–La₂ X_3 –Ga(In)₂ X_3 (X = S, Se) systems and crystal structure ...

Table 3 Experimental details and crystallographic data of La₃NiGaS₇.

Compound	La ₃ NiGaS ₇		
Structure type	La ₃ MnGaS ₇		
Pearson symbol	hP24		
Space group	<i>P</i> 6 ₃		
<i>a</i> (nm)	1.01605(4)		
<i>c</i> (nm)	0.60397(3)		
Cell volume (nm ³)	0.53998(6)		
Calculated density (g/cm ³)	4.7328(6)		
Radiation and wavelength (nm)	Cu <i>K</i> α 0.154185		
Diffractometer	DRON 4-13		
Mode of refinement	Full profile		
Program	WinCSD		
Number of free parameters	19		
$2\theta(^{\circ})$ and $\sin\theta/\lambda$ max. (1/nm)	100.02 4.97		
Reliability factors R_I	0.0856		
$R_{ m p}$	0.1897		
Scale factor	0.21900(1)		

Atom	Wyckoff position	x/a	y/b	z/c	Occ.	$B_{\rm iso} \times 10^2 ({\rm nm}^2)$
La	6 <i>c</i>	0.3737(2)	0.1430(2)	0.2308(6)	1	0.95(5)
Ni	2a	0	0	-0.007(2)	1	0.3(2)
Ga	2b	1/3	2/3	0.1533(7)	1	0.73(14)
S 1	6 <i>c</i>	0.1012(6)	0.5164(8)	0.0023(9)	1	0.6(3)
S2	6 <i>c</i>	0.1438(7)	0.2327(6)	0.2675(14)	1	1.5(3)
S 3	2b	1/3	2/3	0.513(2)	1	1.0(3)

Table 4 Atomic coordinates, equivalent displacement parameters and site occupancies for La₃NiGaS₇.

Fig. 5 Experimental and theoretical diffraction patterns of La₃NiGaS₇ and their difference.

Fig. 6 Coordinations and interatomic distances (Å) in the La₃NiGaS₇ structure.

Fig. 7 Unit cell and coordination polyhedra of the atoms in the La₃NiGaS₇ structure.

Fig. 8 Packing of polyhedra in the structure of the La₃NiGaS₇ compound.

Conclusions

Isothermal sections of the phase diagrams of the NiX–La₂ X_3 –Ga(In)₂ X_3 (X = S, Se) systems were investigated. The existence of compounds reported in the literature was confirmed. The crystal structure of the new quaternary compound La₃NiGaS₇ was determined.

References

- [1] P. Besançon, P. Laruelle, C. R. Acad. Sci. Paris 48 (1969) 48-53.
- [2] A.A. Elyseev, S.I. Uspenskaya, A.A. Fedorov, *Zh. Neorg. Khim.* 15 (1970) 2008-2010.
- [3] W.H. Zachariasen, Acta Crystallogr. 2 (1949) 57-60.
- [4] M. Folchnandt, Th. Schleid, Z. Anorg. Allg. Chem. 627 (2001) 1411-1413.
- [5] J.D. Grice, R.B. Ferguson, *Can. Miner.* 12 (1974) 248-252.
- [6] J. Trahan, R.G. Goodrich, S.F. Watkins, *Phys. Rev. B* 2 (1970) 2859-2863.
- [7] E. Røst, E. Vestersjø, *Acta Chem. Scand.* 22 (1968) 2118-2134.
- [8] G. Collin, J. Flahaut, M. Guittard, A. Loireau-Lozach, *Mater. Res. Bull.* 11 (1976) 285-292.
- [9] A. Tomas, M.P. Pardo, M. Guittard, M. Guymont, R. Famery, *Mater. Res. Bull.* 22 (1987) 1549-1554.
- [10] C.Y. Jones, J.C. Bryan, K. Kirschbaum, J.G. Edwards, Z. Kristallogr. – New Cryst. Struct. 216 (2001) 327-328.
- [11] G. Ghemard, S. Jaulmes, J. Etienne, J. Flahaut, Acta Crystallogr. C 39 (1983) 968-971.
- [12] L.S. Palatnyk, E.K. Belova, *Izv. Akad. Nauk* SSSR, Neorg. Mater. 1 (1965) 1883-1888 (Inorg. Mater. 1 (1965) 1703-1707).
- [13] G.A. Steigmann, H.H. Sutherland, J. Goodyear, Acta Crystallogr. 19 (1965) 967-971.
- [14] A. Likforman, M. Guittard, A. Tomas, J. Flahaut, J. Solid State Chem. 34 (1980) 353-359.
- [15] R. Diehl, C.D. Carpentier, R. Nitsche, Acta Crystallogr. 32 (1976) 1257-1260.
- [16] S. Popović, A. Tonejc, B. Gržeta-Plenković, B. Celustka, R. Trojko, J. Appl. Crystallogr. 12 (1979) 416-420.
- [17] A. Pfitzner, H.D. Lutz, J. Solid State Chem. 124 (1996) 305-308.
- [18] S.A. Semiletov, *Kristallografia* 5(5) (1960) 704-710.

- [19] S.A. Semiletov, *Kristallografia* 6(6) (1961) 200-203.
- [20] G. Collin, J. Flahaut, J. Solid State Chem. 9 (1974) 352-357.
- [21] G. Collin, F. Rouyer, J. Loriers, C. R. Acad. Sci. Paris 266 (1968) 689-691.
- [22] H.D. Lutz, W. Buchmeier, H. Siwert, Z. Anorg. Allg. Chem. 533 (1986) 118-124.
- [23] M. Julien-Pouzol, S. Jaulmes, C. Dagron, Acta Crystallogr. B 38 (1982) 1566-1568.
- [24] Li Peng, Li Longhua, Chen Ling, Wu Liming, J. Solid State Chem. 183(2) (2010) 444-450.
- [25] A.M. Loireau-Lozach, M. Guittard, J. Flahaut, *Mater. Res. Bull.* 12 (1977) 881-886.
- [26] A.M. Loireau-Lozach, M. Guittard, *Mater. Res. Bull.* 12 (1977) 887-893.
- [27] D. Carré, M. Guittard, C. Adolphe, *Acta Crystallogr.* 34 (1978) 3499-3501.
- [28] L.D. Gulay, M. Daszkiewicz, M.R. Huch, J. Solid State Chem. 181(10) (2008) 2626-2632.
- [29] M.R. Huch, L.D. Gulay, I.D. Olekseyuk, J. Stępień-Damm, A. Pietraszko, Proc. 3rd Int. Workshop "Relaxed, Nonlinear and Acoustic Optical Processes", Lutsk (2006) 33-36.
- [30] A.A. Eliseev, G.M. Kuzmichyeva, Handbook on the Physics and Chemistry of Rare Earths, Elsevier Science Publishers B.V. 13 (1990) 191-281.
- [31] L.D. Gulay, M.R. Huch, I.D. Olekseyuk, A. Pietraszko, J. Alloys Comp. 429 (2007) 216-220.
- [32] L.G. Aksel'rud, Yu.N. Grin, P.Yu. Zavalij, V.K. Pecharsky, V.S. Fundamensky, *Coll. Abstr. XII Eur. Crystallogr. Meet.*, Moscow, 1989, p. 155.
- [33] N. Rodier, M. Guittard, J. Flahaut, C. R. Seances Acad. Sci. 2 (1983) 65-70.
- [34] I. D. Olekseyuk, N.M. Blashko, O.V. Marchuk, L.D. Gulay, Proc. 7th Int. Workshop "Relaxed, Nonlinear and Acoustic Optical Processes and Materials", Lutsk (2014) 206-209.
- [35] I.D. Olekseyuk, N.M. Blashko, O.V. Marchuk, L.D. Gulay, Proc. 1st Int. Workshop "Actual Problems of Fundamental Science", Lutsk (2015) 256-258.
- [36] N.M. Blashko, I.D. Olekseyuk, O.V. Marchuk, A.O. Fedorchuk, Coll. Abstr. XIII Int. Conf. Cryst. Chem. Intermet. Compd., Lviv, 2016, p. 55.