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AHOTALISA. YV DI3HUX HAYKOBWX Ta IHKEHEPHUX IUCIMILIIHAX TMHPOKE KOJO 3aCTOCYBAaHb MOYKHA
3BECTH J0 33434 PO3B'SI3yBaHHS HEIHIAHUX DIBHAHL ab0 CHCTEM DIBHAHb y PETEJbHO BHOpAHOMY
abcrpakrHOMY TipocTopi. Uepes 3nawni TPyAHOII a60 HABITH HEMOMKJINBICTD 3HAXOKEHHS AHATITHIHAX
PO3B’SI3KiB, /I OTPUMAHHS HAOIMKEHNX PO3B’I3KIB 3a3BUYall BHKOPHUCTOBYIOTH iTepamniitai meronu. s
crarTa cHOKyCOBAHA HA IPEACTABICHHI edEKTHBHOrO CiMeHCTBA TPUKPOKOBHUX ITEpAIiifHUX MEeTOiB,
JKi JIEMOHCTPYIOTh BHCOKWI TOPsIOK 30ikHOCTI. BpaxoBymoum yMOBHU (p-HENepPepBHOCTI, HAKJIA/IEHI HA
BUKOPHUCTOBYBAHI OMEpPATOPH, MPOAHATI30BAHO BJAACTUBOCTI JIOKAJIBLHOI Ta HAIMIBIOKAJIBLHOI 36iKHOCTI.
Hosa Merononoris, mpeacrasiena B Iiil cTaTTi, He 00MEXKYETHCA KOHKPETHUMI METOJAMHU i Moxe OyTu
3aCTOCOBaHA JI0 IMTUPIIOTO JiaTa30HY MiAXOIB, 5Kl IMepe0avaloTh BUKOPUCTAHHS OOEPHEHUX JIHINHUX
omepaTopie ab0 MATPHUIID.

ABsTRACT. In various scientific and engineering disciplines, a wide range of applications can be
simplified to the task of solving equations or systems of equations within a carefully selected abstract
space. Due to the inherent difficulty or even impossibility of finding analytical solutions, iterative
methods are commonly employed to obtain the desired solutions. This article focuses on the presentation
of efficient family of three-step iterative methods that exhibit high convergence order. The analysis
delves into the local and semi-local convergence properties, considering yp-continuity conditions imposed
on the operators utilized. The novel methodology introduced in this article is not limited to specific
methods but can be applied to a broader range of approaches that involve the use of inverses of linear
operators or matrices.

1 INTRODUCTION

In the realm of applied science and technology, numerous challenges can be addressed by refor-
mulating them as non-linear equations in the following format:

G(z) =0, (1.1)

where G : Q C Q1 — Q2 represents a differentiable function in the Fréchet sense. Here, Q1, Q2
signifies a complete normed linear space, while ) corresponds to a non-empty, open and convex set.

Typically, closed-form solutions for these nonlinear equations are elusive. Hence, iterative me-
thods are commonly employed to seek their solutions. Among these methods, Newton’s method
is frequently employed due to its quadratic convergence and a widely used iterative technique for
solving equation (1.1). In recent times, significant progress has been made in the field of science and
mathematics, leading to the discovery and application of numerous higher-order iterative methods
for solving nonlinear equations |2-12, 14-16, 18-23|. However, these methods often suffer from a
major drawback, namely the need for computing second and higher-order derivatives, which renders
them impractical for real-world applications. The computation cost associated with evaluating G’
in each iteration makes classical cubic convergent schemes less suitable. It is worth noting that
many of these methods rely on Taylor expansions to establish convergence results, necessitating
derivatives of order higher than the method itself.
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The analysis of local and semi-local behavior of iterative methods provides valuable insights into
convergence properties, error bounds, and the region of uniqueness for solutions. Several studies
[1-5, 18] have focused on investigating the local and semi-local convergence of efficient iterative
techniques, yielding significant results such as convergence radii, error estimates, and extended
applicability of these methods. These findings are particularly valuable as they shed light on the
intricacies involved in selecting appropriate initial points for the iterative process.

In the present article, we introduce and investigate a particular class of methods composed of
three sequential steps. The main focus of this study is to establish convergence theorems for these
methods, building upon the groundwork laid out in a previous work [23]. The three-step family of
methods (TSFM) is defined for zg € @ and each m =0,1,2,... by

Ym = Tm — bG’(zm)flG(xm),
Zm = T(xrm ym)a (1-2)

Tt = 2 — [ll)G’(ym)_l 4 <1 _ 2) G’(xm)_l] Glzm),

where b € R — {0} is a parameter and T is any iteration operator of convergence order g > 2.

The local convergence order g + 2 is determined in [23] by means of the Taylor expansion series
approach when Q; = Q2 = R*. Moreover, assumptions on the existence and boundedness of G¥
are required limiting the applicability of TSFM to solve equations with operators at least four times
differentiable. But TSFM may converge if only G’ appearing on it exists. To illustrate the concept,
let us consider a motivational example where G is defined on the interval @ = [—0.5,1.5] as follows:

Gla) = { s23In(z) + 82° — 8a*, %f x #0, (13)
0, if x=0.

We can observe that the solution z =1 € () and the third derivative is given by
11 9
G (z)= 3 192z + 480z + 21n(x).

It is obvious that G is unbounded on Q. Thus, utilising the findings in [23], convergence isn’t
always guaranteed. That is why the local analysis should be based on information only in TSFM
(i.e., on G and G’). Such an analysis is presented in Section 2 for Banach space valued operators
using generalized continuity conditions on G’. Moreover, the more important semi-local analysis of
TSFM not given in [23] is studied in Section 3 by means of majorizing sequences. The methodology
applied on (1.2) can be used to extend the applicability of other methods analogously [1-22].

The remaining sections of this paper are organized as follows: Section 4 focuses on the inves-
tigation of convergence properties of specific cases of equation (1.2). Section 5 includes numerical
applications that utilize the convergence results derived in the previous sections. Finally, Section 6
concludes this paper with closing remarks.

2 LOCAL ANALYSIS

Throughout this Section we assume the existence of a solution Z € @ for the equation G(z) = 0.
Let M = [0,+00). Moreover, assume:

(C1) There exists a function ¢g : My — M which is continuous and non-decreasing (FCN) so that
©o(t) —1 = 0 admits a smallest solution (SS). Denote such solution by pg and let My = [0, po).
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(C2)

(Cs)

There exist FCN ¢ : Mg — M, g : My C My — M, for some subset of My, such that
91(t) — 1 =0 and g2(t) — 1 = 0 admit SS, where

f (1= 8)t)d6 + 11— b|(1 + [} po(6t)d8)
B 1 —o(t)

g1(t)

Denote such solutions by 71,72, respectively.
The equations ¢o(g1(t)t) — 1 =0 and ¢o(g2(t)t) — 1 = 0 admit SS in M; — {0}. Denote such
solutions by p1, p2, respectively. Let p = min{p1, p2} and My = [0, p).

The equation g3(t) — 1 = 0 admits SS in My — {0}, denoted as r3, where g3 : My — M is
given as

Jo £((L=0)g2(t)t)d0) | < (1)
1 — wo(g2(t)1) (1 =o)X = po(g2(t)t))

! ’1 - b’ i amm) /0 050140 )

g3(t) = [

where

o) = { (1 +g1(0))t),
©o(t) + ¢olg1(t)t)

and

() = { e((g1(t) + g2(1))1),
©0o(g1(t)t) + wo(g2(t)t).

In practice the smallest of the two versions of functions ¢ and ¢ are chosen.

There exists a linear operator &7 : Q1 — Q2 such that &/ ! € Z(Q2,Q1), which is the space
of linear continuous operators mapping Q)2 into Q1.

|7 ~HG'(z) — )| < ¢o(||lz — Z|) for all z € Q.

IT(z, 2 —bG'(2) " G (2)) — 2| < g2(llz — z|) |z — 2|

and
|l G (y) — G ()] < ¢(lly —2|))

for all z € Sy = S(z, po) N Q.

Notice that by the assumptions (C1) and (Cg), ¢o(||z — Z||) < 1. Thus, G'(z)~! € Z£(Q2, Q1)
by the standard Banach perturbation Lemma [1,15,17] involving linear operators. Hence, the
second variable term in T of assumption (C7) is well defined.

and

Slz,r] C @, where r = min{r;}, i = 1,2, 3.

Notice that the usual assumption in such studies is that z is simple, i.e., G'(Z)7! € Z(Q2, Q1)
[23]. However, such assumption is not made here. Therefore, the results can be used to approximate
a solution Z of multiplicity greater than one.
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The calculations requiring these assumptions for g € S(Z,r) — {Z} and induction are in turn:

lo7 =1 (2) = )| < wolllz = Z|) < po(r) <1 for @ e S(z,7)— {7},
1

ol —z)’

yj— T =a;— T — G'(2;) 7 G(xg) + (1 = b)G'(a7) " G(xy),

et = o)l s + 11— b)] (1+ [ wo(@lla; — ))do)] llz; - @)
1= eolllz; - al)

o 16 @) e <

< gillzj = zlDllz; — || < [lay — 2] <,
125 = @l = 1T(x5,y;) — zl| < g2(llzj — 2Dz — 2]
< [lzj — |l

and

Tj4l —T =2 —T — G/(Zj)_lG(Zj) + I:G/(Zj)_l — %G’(yj)_l - (1 - b)G'(xj)_l] G(Z])

— 52 G5) G + () - G+ (10 4) ()7 - e ] 6

Jo (1= )]z~ l)ds ( Bllz; — )
L=l —al) (= polllz; - 2T - polllz - 7))

a1 — 2 < !
1 o(lz; - zl) . DR
*‘1 b‘ (1—<P0(||$j—fﬂ))(1—SOO(Hyj—i‘U))(1+/0 eol@llz ”)d‘))] Iz =l

< g3(llzj — |l — z|| < [|lz; — 2],

where
_ o(llzj — 2| + [ly; — )
@(|lz; — z[|) = _ _
eo(llzj — zl) + wollly; — =)
and
_ ey =zl + 2 — 2l
S(llz; —z|) = - )
eollly; — ZII) + wo(llz; — ZI))-

Hence, we showed by induction:

Theorem 2.1. Given the assumptions (C1)-(Cg), it is established that {z,,} C S(z,r) and
converges to T as m tends to positive infinity, provided that the initial value xq lies in the set
S(z,r) —{z} . We now provide a result that establishes the uniqueness of the solution in the
context of local convergence.

Proposition 2.1. Assume that there exists a solution z* € S(&, p3) of the equation G(x) = 0,
where ps > 0.

Furthermore, assume the condition in (Cg) is satisfied within the ball S(z, p3), and there exists
a larger radius py > ps such that

1
/0 <p0(9p4)d9 < 1. (2.1)

Let S1 = QN S[Z, ps]. Then, T is the unique solution of the equation G(x) = 0 within the set
S1.
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Proof. Define the linear operator # = fol G'(Z + 6(z* — x))dh. Utilizing condition in (Cs) and
(2.1), we can deduce the following:

IG' @)~ (7 = G'@)] < /0 o(0]l2" — z[|)do

< /01 ©0(0pa)do
< 1.
Therefore, # ~' € £(Q2,Q1), and based on the approximation
ot —z=W"YHG (") - G@) =#"10) =0,

we conclude that z* = 7. O

3 SEMI-LOCAL ANALYSIS

W,

Analogous to the local analysis but with the role of , “p” is exchanged by zg, “¢” functions
which are developed below.
Assume:

(H1) There exists FCN 99 : M — M such that ¢o(t) — 1 = 0 admits SS. Denote such solution by
R. Let M3 =10, R] and S5 = S(z9, R) N Q.

(H2) Same as (Cs).
(H3) |7~ H(G' (@) — )| < dolllz = o|) for all z € Q.
(Hy) There exists FCN v : M3 — M so that
l/ (G (y) = G" (@) <y —zl)) forall z,ye€ Ss.

(Hs) |T(z,z —bG'(z)"'G(x)) — (z — bG' ()~ G(2))|| < v(x) — B(x) for some FCN functions v, 3 :
Mz — M and all z € Ss.
Define the real sequence {ay,} for ag = 0, By > |b||| G’ (z0) " G (z0)|| and all m = 0,1,2,--- for
some FCN 3 : M3 — M,

Ym = Bm + Bma
! 1
Am = (1 + /0 Yo(am + 0(ym — am))d9> (Ym — am) + m(l + Yo(am)) (Bm — am),
b~ { ¥(Bm — om)
" volam) + o(Bm)
_ 1 U
o =t s (4 = ) -y
1
Om+1 = (1 + /0 Yo(am + O(ami1 — am))de) (m+y1 — am) + ]11)|(1 + Yo(am)) (Bm — am)
and
Pm+1 = i1 + w&‘
" " 1 —o(amq1)

As in the local case, ¥o(||zo — 20l|) = %0(0) < Yo(R) < 1. Thus, G'(z9)~! € Z(Q2,Q1)
and the iterate [y is well defined. Notice also that by v(zm) = ym and B(2y,) = Bm. These
functions are further specialized if the operator 7' is precised (see the Numerical Section).
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(Hg) There exists Rg € [0, R) such that for all m =0,1,2,...
Yo(am) <1 and o, < Ry.
It follows by this assumption and (3.1) that
0 < am < Bm <ym < amp1 < Ro

and the sequence {a;,} is convergent to its least upper bound R* € [0, Rp]. This limit is
unique.

And

(H7) Slzo, R'] C Q.
The sequence {a;,} is motivated by a series of calculations as in the local case which in turn
are:

lzj = yill = 1T (x5, 95) — yjll < v — By,
lz; — xoll < llz; — yjll + lly; — zoll <5 — B + Bj —aj = v < R,

1

Glz)) = G(z) = Glz;) = G (w))(y; — ;).

1
ud]G@wng(rgéume—mu+w%—wmw@H%—xﬂ

1
+ W(l + vo(llz; — zolNllys — =]l

1 1
< <1 +/0 Yol +0(v; — Oéj))d9) (v —ay) + W(l +o(a;)) (B — aj) = A,

ey = 5l = |6/ + (@) - G )] 662

| (reen]
< 1+ A
1 —tpo([lz; — o) (1 = vo(lly; — zol)) |
< Q41 — V5
@541 = @oll < llzje1 = 2]l + [[25 — @oll < ajyr =7 + 75 — a0 = a1 < R, (3.2)

Glrjs1) = Glazi) - Gla) = 36/w) s — 27)

1
|/ 7' Gaj)] < <1 +/0 Yo(oy + 0(ajt1 — Oéj))d9> (1 — )

+@u+%wm@j%w=ﬂh

0j+1
1 —vo([|zj11 — 2ol|)

[y+1 = il < [0]

di11
<|pl—2H 3. —a
= | |1 _w()(aj-‘,—l) 6]+1 7+1

and

lyj+1 = zoll < lyja1 — zjpall + 2541 — 20|

< Bir1 —ajy1 + a1 —oag = B4 < R
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Thus, the iterates {x;}, {y;},{z;} C S(zo, R*) are Cauchy in Banach space Q1. Hence, there exists
z € S[zg, R*] so that lim;_, ;o x; = Z. Moreover, by (3.2) G(Z) = 0. Furthermore, by the estimate

zj4k — 25l < ajir — oy,
the useful items
|7 — 2| <R —«q;

become available.

Hence, we arrive at.

Theorem 3.1. Subject to the conditions (Hy)-(H7), the sequence {x,,} converges towards a
solution T € S[xg, R*| of the equation G(z) = 0.

We establish the uniqueness of the solution domain in the following proposition.

Proposition 3.2. Assume the following conditions:

(i) There exists a solution T* of the equation G(x) =0 in S(xo, R1) for some Ry > 0.
(ii) Condition (Hs) holds on S(xg, R1).
(iii) There exists Ry > Ry such that

1
/ Yo((1 — )Ry + 0R3)db < 1.
0

Set S4=QnN S[xo,RQ].

Then, the only point in the domain Sy that satisfies the equation G(x) = 0 is T*.
Proof. Let us assume that there exists #° € Sy such that G(z) = 0. Conditions (i) and (iii)
allow us to obtain the following inequality:

1
IG" (20) M2 = G'(=0))]| < /0 Yo((1 = 0)[2" = zol| + 0]l — xol))d

1
< / wo«l — 9)R1 + 9R2)d9
0
<1,
where 2" = fol G'(z* + 0(z" — 7*))dh. Hence, we conclude that =’ = Z*. O
Remark 3.1.

(i) In condition (Hy), the limit point R* can be replaced by R.
(ii) Under all the assumptions (Hy)—(Hz), let ¥* = & and Ry = R* in Proposition 3.2.

4 SPECIAL CHOICES AND APPLICATIONS

Let us specialize b and T', so that we can determine the function go in the local case and the
majorant sequence in the semi-local case. In particular, the fifth order methods studied respectively
in [13,22] have been reduced to

D=1, Tlaju) =25~ 5(G()" + G () G ;)

and

b= 5, T(a:j,yj) =T — G’(yj)*lG(wj).
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That is, method (1.2) specializes to
yj = xj — G'(x)) " G(zy),

1 _ -
2= = 5(G'(y;) ™ + G () HG(wy), (4.1)
i1 =z — G'(y;) T G(%)
and
1 _
v =5 — 5Ca;)" Glay),
5 = 25— Gly) " Glay) (42)
i1 =z — (2G'(y;) 7" = G'(2) T G(%)),
respectively.
We shall also consider the sixth order method studied in [21], for
2 1 9 _ 3 _ -
b=2, T(wjy)) =u;—5 (—1 + 4G (W) G () + 6 () 1G’(yj)> G () G(y).

That is, we have the method
2 _
yj = zj = 3G (1) 'G(xy),
1

%zxr—QQJ+ja@p*dwn+jduw*cmm)aua*eun (4.3)

s = 7 — 5 (36 ()" — G (a) )Gz

Next, we determine the function go for each of the above choices.

METHOD (4.1)

The motivational estimates are:

(G'(ym) ™ = G'(zm) "G (am),

o~ = — 7~ () Clam) —
Sy o((1 = 6) 2 — 2])d6 B (1+ J3 olOllrm — 7])d6)

b= < [ B o gl 2T gl 717~ 21

thus, we can choose

_ Jo (1 = 0)t)dp G)(1 + [ po(6t)do)
1= ¢o(t) 2(1 = o(t)) (1 — wo(g1(£)t))

92(t)

METHOD (4.2)

The calculations here yields

2 =T =X — T — G'(20) T G(zm) + (G (@) ! = G (ym) 1 G (2),

S =) —alds P (1+ o o0en — 7))
T ollen 20 (= olllem — ZD) — pollom — 21D

[zm — || <

] |Zm — |-
Thus,

Jre(—opyde @) (1 + fy goo(Ot)cw)
T w0 @)1 - p @)

g2(t)
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METHOD (4.3)

This time we get in turn
- - -1 1 9 —1 v 9
Zm — T =Tm — T — G(xm) G(a:m)—§ —I—2]—|—Z(G(ym) G(mm)—l)-i-zl

# 3G @) 6 )~ 1)+ 51] 6 ) G ),

B A (R et O 1
Iz =2l < e — 2 3 (1—¢0<me—zn>
. 3 >(1+f01¢0(9||$m—$\)d9>]”$ L
1= gollgm =21 ) 1= po(zm — 2] "
Hence,
92@)::jggx(1——0ﬁﬂd0 3@(t) ( L 3 ) (1+-J§9xm96d9).
1 —o(t) 8 L—o(t) 1—polg1(t)t) 1 —o(t)

The iterates for the semi-local case follow as given below:

METHOD (4.1)

It follows by eliminating the iterate x,, from the second sub-step by means of the first sub-step
1 1
= = ()™ = 56 ) = 56 ) ) o)
1 _ -
= _gG,(ym) I(G,(xm) — G (ym))G' (zm) IG(xm)

_ ;nym)—l(a'(xm) — G (ym)) (4 — )

and

E@Em<ﬁm — Q) _

2 1—4o(Bm) O

2 — ymll <

METHOD (4.2)

Similarly, we have for this method

= = 5 )~ Glm) — G (yn) " Glam)

= G'(ym) ™" [(G'(2m) = G'(ym)) + G'(@m)] (Ym — 2m)

and

Um + 1+ Yo(aum)
1- ¢0<Bm)
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METHOD (4.3)

For this method, we can get

b= = [ 3T 5T = 36/ )6 ) = 56 )6 )| (=3 = )

3 2
= = BT+ 9(G ()G () = 1)+ 3G ()G () = )] (9 — ),
3 glﬁm q/jm . B
Izm = umll < 15 (8 T 0B TP %(am)> (Bm = cum) = Y — Bun-

5 NUMERICALS

The following examples demonstrate how to apply the local convergence criteria.
Example 5.1. We study a system of differential equations of the form:

Gi(x1) =€, Ghy(xg) =(e—1Dz2+1, Gi(z3)=1

with the starting point G1(0) = G2(0) = G3(0) = 0. We let G = (G1,G2,G3) and Q1 = Q2 = R?
and Q = S[0,1]. The point = (0,0,0)T is a solution of the system. We define a function G on Q
for any vector x = (1,22, 73)" as

-1
G(o) = (" =1, =5 ~a} + og,0)".
The function G has this derivative matrix:
e*1 0 0
G'(z)=10 (e—1x3+1 0
0 0 1

and we see that G'(z) = I. To check the local convergence criteria, we need to meet the conditions

(C1) — (Cs). We can do that by choosing po(t) = (e — 1)t, p(t) = eﬁt, po = 0.581977 and
So =SNS(z,po). The radii for methods (4.1),(4.2),(4.3) are given in Table 5.1.

Table 5.1. Estimates for Example (5.1)

Radii 1 79 73 r =min{r;}
Method (4.1) 0.382692 0.235533 0.21314 0.21314
Method (4.2) 0.164331 0.138126 0.121147 0.121147
Method (4.3) 0.229929 0.1244 0.123482 0.123482

Example 5.2. Let Q1 = Q2 = Q = R. We define a function G on Q by G(z) = sinz. The
derivative of G is G'(x) = cosx. The fixed point is x* = 0. To check the conditions (C1) — (Cyg),
we choose @o(t) = p(t) =t, po =1 and So = SN S(z,po). The radii of convergence are shown in
Table 5.2.

Example 5.3. We analyze the equation system given by

G(z) = (x% + sin(z1) — exp(x2), 3x1 — cos(x1) — acg)T,
where the initial conditions are set as ro = {—1.5, —2}7. We obtain the solution

T = {—0.907430217073695685..., —3.338063225186236275...} T .
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Table 5.2. Estimates for Example (5.2)

Radii r r2 r3 r = min{ri}
Method (4.1) 0.666667 0.409084 0.369883 0.369883
Method (4.2) 0.285714 0.238655 0.209218 0.209218
Method (4.3) 0.4 0.214922 0.213304 0.213304

Table 5.3. Estimates for Example (5.3)
Methods lx1 — Z|| lz2 — Z||

Method (4.1)
Method (4.2)
Method (4.3)

0.00106372955621983
0.04276386733727288
0.01838299860784418

2.968770575826642 - 10~ 11
8.68882879660436 - 10~
2.841080214146303 - 10~ 11

Methods

lzs — 2|

4 — |

Method (4.1)
Method (4.2)
Method (4.3)

2.968770575826642 - 10~ 11
2.968760738845313 - 10~ 11
2.968760738845313 - 10~ 11

2.968770575826642 - 10~ 11
2.968760738845313 - 10~ 11
2.968760738845313 - 10~ 11

Table 5.3 provides error estimates for the methods under consideration.
Example 5.4. Consider the function G(x) = (g1(x), ..., gn(x)), where

n
gi(r) =z +1-2In [ 1+ Z Ty |, 1<i<n,
J=Lj

with n = 8. The initial conditions are given by o = {5.35,...,5.35}7, and the solution is
z = {6.753932311935358594..., . .. ,6.753932311935358594...}T.

By utilizing methods (4.1), (4.2), and (4.3), it is observed that the system achieves convergence
to the solution  within 6, 7, and 5 iterations, respectively.

6 CONSLUSION

We have introduced a novel technique that allows for the demonstration of both local convergence
analysis and semi-local convergence analysis of high convergence order methods, utilizing only the
derivatives present within the method itself. Previous works have often assumed the existence of
high-order derivatives that may not be inherent to the method, thereby limiting their applicability.
In contrast, our technique overcomes this limitation and provides error bounds and uniqueness
results that were previously unavailable. Moreover, this technique exhibits a high level of generality
as it is independent of the specific method being employed. Consequently, it can be readily applied to
extend the applicability of other higher order methods, including single step or multi-step methods
[6-12,14,19,20,20,23].
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