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Abstract. We consider the two-star model, a family of exponential random graphs indexed by two
real parameters, h and α, that rule respectively the total number of edges and the mutual dependence
between them. Borrowing tools from statistical mechanics, we study different classes of correlation
inequalities for edges, that naturally emerge while taking the partial derivatives of the (finite size)
free energy. In particular, if α, h ≥ 0, we derive first and second order correlation inequalities and
then prove the so-called GHS inequality. As a consequence, under the above conditions on the
parameters, the average edge density turns out to be an increasing and concave function of the
parameter h, at any fixed size of the graph. Some of our results can be extended to more general
classes of exponential random graphs.

1. Introduction

Correlation inequalities are an important tool in equilibrium statistical mechanics. They are
used to estimate moments and correlations in ferromagnetic systems, allowing in turn to obtain
analyticity properties of some physical observables (such as magnetization and susceptibility) and
to prove/disprove the presence of a phase transition. Among these inequalities, we find the Griffiths,
Hurst and Sherman (GHS) inequality, that rules the three-particle interactions and is mainly known
for providing convexity properties of relevant functionals. As the Griffiths, Kelley and Sherman
(GKS) inequality (see Griffiths (1967); Kelly and Sherman (1968)), it was firstly proved for the
classical Ising model in Griffiths et al. (1970), to show that the average magnetization is a concave
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function of the positive external field, and then extended to general classes of even ferromagnets
that can be derived out of the Ising model (see Simon and Griffiths (1973); Ellis (1975); Griffiths
(1969); Newman (1975/76)).

However, the aforementioned result is only one of the different implications entailed by the GHS
inequality. For example, it has been used to characterize possible phase transitions, to prove mono-
tonicity of correlation length, and to derive critical exponent inequalities for the Ising model on Zd;
to obtain monotonicity of mass gap and to estimate coupling constants in ϕ4 field theory; or also to
show convexity-preserving properties of certain differential equations and diffusion processes. For
further details we refer the reader to Ellis et al. (1976) and references therein.

In the present paper we consider a family of exponential random graphs known as two-star model
(see Park and Newman (2004)). Specifically, we consider a Gibbs probability measure on the set of
all simple graphs on n vertices, whose Hamiltonian depends on the densities of edges and two-star
graphs. Our goal is to study some correlation inequalities for such a model, with a particular focus
on the GHS inequality.

In comparison with ferromagnetic systems, the major difference is that the Gibbs measure of our
system, being supported on {0, 1}(

n
2), does not enjoy Z2-simmetry. As a consequence, although the

positivity of the support of the measure allows to easily deduce positivity of the moments and derive
the Fortuin, Kasteleyn and Ginibre (FKG) inequality Fortuin et al. (1971), higher order correlations
are non-trivial to analyze, and generally depend on the choice of the parameters.

The manuscript is organized as follows. In Section 2 we introduce the two-star model and we define
the corresponding free energy function. Moreover, we briefly recall some recent results about its
asymptotic behavior, including the characterization of the phase diagram and some limit theorems
for the edge density. Section 3 is devoted to correlation inequalities and it collects our main results.
We first provide the formal definition of the aforementioned FKG, GKS and GHS inequalities in
the context of a two-star model with generalized parameters (see Eq. (3.1)). In Subsection 3.1 we
show that the FKG and GKS inequalities hold for this model whenever α ≥ 0, and then we derive
some preliminary results used afterwards in the proof of the GHS inequality, that is the core of
the present work (see Theorem 3.10). The statement of this result, that holds under the additional
hypothesis h ≥ 0, is given in Subsection 3.2 together with its proof. This is mainly based on ideas
from Lebowitz (1974), where an alternative and simplified strategy of the original proof has been
devised. In Subsection 3.3, we then bring back the results to the classical two-star model, and make
a few comments about some immediate consequences of the derived correlation inequalities. In
particular, as an application of the GHS inequality, we will prove a standard central limit theorem
for the edge density of the two-star model. In Section 4 we discuss which of our techniques can be
extended to prove the FKG and GKS inequalities for general exponential random graphs and which
are the issues in adapting the proofs to obtain the GHS inequality in this setting.

2. Model and background

2.1. Two-star model. Let Gn be the set of all simple graphs on n labeled vertices that are identified
with the elements of the set [n] = {1, 2, 3, . . . , n}. We define a probability distribution on Gn by
means of the homomorphism densities of the subgraphs of a graph. Consider a graph G ∈ Gn and
let H be a given simple subgraph. An homomorphism of H into G is an edge-preserving map from
V (H) to V (G), where V (·) denotes the vertex set. If we normalize the number of homomorphisms of
H into G by the number of all possible mappings from V (H) to V (G), we obtain the homomorphism
density of H into G,

t(H,G) :=
|hom(H,G)|
|V (G)||V (H)| , (2.1)

i.e. the probability that a random mapping between the vertex sets is edge-preserving.
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For any k ∈ N, let H1, H2, . . . ,Hk be pre-chosen finite simple graphs (edges, stars, triangles,
cycles, . . . ) and let β = (β1, . . . , βk) be a collection of real parameters. For any choice of β, an
exponential random graph is identified by the Gibbs probability density

µn;β(G) =
exp (Hn,β(G))

Zn;β
, for G ∈ Gn, (2.2)

where the function Hn,β, called Hamiltonian, is given by

Hn;β(G) = n2
k∑
j=1

βjt(Hj , G). (2.3)

The normalizing factor

Zn;β =
∑
G∈Gn

exp (Hn;β(G)) (2.4)

is the partition function.
In the present setting we focus on the two-star model, characterized by a Gibbs measure that

depends only on the densities of edges and two-star graphs. Recall that a two-star graph is an
undirected graph with one root vertex and two other vertices connected with the root, and otherwise
disconnected. Under this assumption, the measure can be conveniently expressed as follows.

Let En denote the edge set of the complete graph on n vertices, with elements labeled from 1 to
(
n
2

)
.

If i, j ∈ En are neighboring edges, we write i ∼ j and we identify the unordered pair {i, j} with the
resulting two-star graph, that will be called wedge {i, j} in short. LetWn := {{i, j} : i, j ∈ En, i ∼ j}
be the set of wedges of En, and set An := {0, 1}|En|, | · | being the cardinality of a set.

Notice that there is a one-to-one correspondence between graphs G ∈ Gn and elements x =
(xi)i∈En ∈ An so that, if G corresponds to x, it holds that

t(H1, G) =
2

n2

∑
i∈En

xi t(H2, G) =
2

n3

∑
{i,j}∈Wn

xixj +
2

n3

∑
i∈En

xi , (2.5)

with H1 an edge and H2 a wedge. Hence, we may look at the Hamiltonian of the two-star model
as a function on An defined by

Hn;β1,β2(x) =
2β2

n

∑
{i,j}∈Wn

xixj + 2

(
β1 +

β2

n

)∑
i∈En

xi . (2.6)

When taking the limit as n goes to infinity, the terms of the Hamiltonian contributing to the
asymptotics of the relative Gibbs measure have order n. Therefore, having order 1, the term
2β2
n

∑
i∈En xi can be dropped and we can work with the alternative Hamiltonian

Hn;α,h(x) =
α

n

∑
{i,j}∈Wn

xixj + h
∑
i∈En

xi , (2.7)

where, for convenience, we have set h = 2β1 and α = 2β2.
In the following, we will focus on the corresponding two-star model, having Gibbs density on An

given by

µn;α,h(x) =
exp (Hn;α,h(x))

Zn;α,h
with Zn;α,h =

∑
x∈An

exp (Hn;α,h(x)) . (2.8)

Accordingly, we will denote the related measure and expectation by Pn;α,h and En;α,h, respectively.
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2.2. Free energy. The free energy is a key function in the context of statistical mechanics, as it
encodes most of the asymptotic properties of the system. Specifically, the finite and infinite size
free energies associated with (2.7) are

fn;α,h :=
1

n2
lnZn;α,h and fα,h := lim

n→+∞
fn;α,h . (2.9)

To understand the important role of the free energy, we first observe that its partial derivatives
w.r.t. α and h, respectively give the average edge and wedge densities of the model. More precisely,
if we denote by En the number of edges of the graph G, and by Wn the number of wedges of G, we
get

∂hfn;α,h =
En;α,h (En)

n2
and ∂αfn;α,h =

En;α,h (Wn)

n3
. (2.10)

The characterization of the infinite size free energy, together with its analytical properties, then
provides a relevant tool to infer some structural properties of the graph.

As an application of Theorems 4.1 and 6.4 in Chatterjee and Diaconis (2013), for any (α, h) ∈ R2

we have that

fα,h = sup
0≤u≤1

(
αu2

2
+
hu

2
− 1

2
I(u)

)
=

α(u∗)2

2
+
hu∗

2
− 1

2
I(u∗), (2.11)

where I(u) = u lnu+ (1− u) ln(1− u) and u∗ = u∗(α, h) is a maximizer that solves the fixed-point
equation

e2αu+h

1 + e2αu+h
= u. (2.12)

Depending on the parameters, Eq (2.12) can have more than one solution at which the supremum
in (2.11) is attained. Due to Theorem 4.2 in Chatterjee and Diaconis (2013), in the large n limit,
a two-star model drawn from (2.8) is indistinguishable from an Erdös-Rényi random graph with
connection probability u∗, where u∗ = u∗(α, h) is randomly chosen from the solutions of the scalar
problem (2.11). Therefore, having multiplicity of optimizers translates in the possibility of having
limiting graphs with very different edge densities.

2.3. Edge-occurrence probability. As already observed by Park and Newman for the edge-triangle
model (see Park and Newman (2005), Eq. (4)), the probability that the edge xi is present can be
also written as the expectation of a function of the Hamiltonian where xi = 1. Explicitly, in our
context we obtain

En;α,h(xi) = En;α,h

1 + exp

−α
n

∑
j∈En:j∼i

xj − h

−1 . (2.13)

Since the model enjoys a symmetry in the edge structure, in the sense that each edge in the complete
graph has precisely the same neighborhood, the aforementioned expectation turns out to be the same
for all i. This leads to

En;α,h (En) =
∑
i∈En

En;α,h(xi) =

(
n

2

)
En;α,h(xi) . (2.14)

Hence, the average edge density corresponds asymptotically to the edge-occurrence probability. At
this point, the following remark is in order.

Remark 2.1. The symmetry in the edge structure is intrinsic to the edge set En, and does not depend
on the specific exponential random graph taken into account. Hence, the analog of the identity (2.14)
holds true for general Hamiltonians of the form (2.3). To our knowledge, this property, which is
evident from the interacting particle system perspective, has not been pointed out before.
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Taking into account the first identity in (2.10) and the identity (2.14), we can relate the edge-
occurrence probability to the finite size free energy. As a consequence, in the case when all the
following equalities are legitimate, we obtain

lim
n→∞

En;α,h(xi) = 2 lim
n→∞

∂hfn;α,h = 2∂hfα,h = u∗(α, h),

where the last identity follows by differentiating (2.11) w.r.t. h and recalling that u∗ solves (2.12).
The interchange of limit and derivative is justifiable on a suitable subregion U \{(αc, hc)} of the pa-
rameter space, characterized in the following subsection, where the sequence (∂hfn;α,h)n≥1 converges
uniformly and the sequence (fn;α,h)n≥1 converges pointwise to a differentiable limit (see Radin and
Yin (2013), Thms. 2.1 & 2.2, and Bianchi et al. (2021), Sec. 4).

While an explicit expression of the edge-occurrence probability as function of (α, h) is missing
even in the infinite size limit, it is easy to verify from (2.13) that En;α,h(xi) ≥ 1/2 for all n ∈ N,
whenever α, h ≥ 0. However, simulations suggest that the region of parameters where the average
edge density is bigger than 1/2 is larger, and it also includes negative values of h. For large enough
n, we can get some insight on this region by the analysis of the asymptotic behavior of the model.
The study of equations (2.11) and (2.12) leads to the phase diagram that we are going to summarize.

2.4. Phase diagram. We collect here the relevant features of the phase diagram of the two-star
model, that can be obtained as a special case of some of the results in Radin and Yin (2013).

The infinite size free energy fα,h is well-defined in R2. Moreover, it is analytic in the whole plane
except for a continuous critical curve

(2,−2) ∪ {(α, h) ∈ (2,+∞)× (−∞,−2) : h = q(α)}︸ ︷︷ ︸
:=M

,

starting at the critical point (αc, hc) = (2,−2), contained in the cone α > 2, h < −2, and where q
is a (non-explicit) continuous and strictly decreasing function. In particular, the system undergoes
a first order phase transition across the curve and a second order phase transition at the critical
point (see Radin and Yin (2013), Thms. 2.1 & 2.2). The scalar problem (2.11) admits one solution
in the uniqueness region U := R2 \M while it has two solutions along the curveM (see Radin and
Yin (2013), Prop. 3.2). A qualitative graphical representation of the phase diagram is provided in
Fig. 2.1.

An analogous analysis has been performed in a sparse regime in Annibale and Courtney (2015),
in the directed graph case in Aristoff and Zhu (2018), and for a mean-field version of the model in
Biondini et al. (2022).



ℳ

αc
α

hc

h

Figure 2.1. Phase space (α, h) for the two-star model (2.7). The blue region, that includes the
critical point, is the uniqueness region U for the maximization problem (2.11); whereas, the red
curve corresponds to the critical curveM along which (2.11) admits two solutions.
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2.5. Limiting distribution for the edge density. We summarize some results on the asymptotic be-
havior of the edge density of the two-star model. By retracing the proofs in Bianchi et al. (2021),
we can obtain the following strong law of large numbers and standard central limit theorem:

2En
n2

a.s.−−−→
n→∞

u∗(α, h) w.r.t. Pn;α,h, for (α, h) ∈ U (2.15)

and
√

2
En − En;α,h(En)

n

d−−−→
n→∞

N (0, v(α, h)) w.r.t. Pn;α,h, for (α, h) ∈ U \ {(αc, hc)}, (2.16)

where N (0, v(α, h)) is a centered Gaussian distribution with variance v(α, h) := ∂hu
∗(α, h), being

u∗ the unique maximizer of (2.11). In Subsection 3.3 we will give a proof of (2.16) based on an
application of the GHS inequality. We highlight that the proof of the analogous result in the context
of the edge-triangle model in Bianchi et al. (2021) instead relies on the uniform convergence of the
sequence of the second order derivatives of the free energy, that in turn is derived from the validity
of Yang-Lee theorem (see Yang and Lee (1952)).

A further result can be given relatively to the multiplicity region. For all (α, h) ∈M and for all
small enough ε > 0, there exists a positive constant c = c(ε;α, h) such that if

N∗(ε) := (u∗1(α, h)− ε, u∗1(α, h) + ε) ∪ (u∗2(α, h)− ε, u∗2(α, h) + ε),

then, for large enough n, it holds

Pn;α,h

(
2En
n2

/∈ N∗(ε)
)
≤ e−cn2

,

where u∗1, u∗2 solve the maximization problem in (2.11).
Similar limit theorems are obtained, with different techniques, in Mukherjee and Xu (2023), where

also results on the partial sum of the degrees can be found.

3. Correlation inequalities

In statistical mechanics the study of correlations between particles, so as the analysis of local
functions, is often performed with the help of two important inequalities, both related to the sign of
the derivatives of the free energy; the GKS inequality and the GHS inequality (see Friedli and
Velenik (2018); Griffiths et al. (1970); Kelly and Sherman (1968); Lebowitz (1974) and references
therein for further details). We aim at deriving the analogs of these two inequalities for our reference
measure µn;α,h, given in (2.8).

To understand the connection between the GKS inequality and the sign of the derivatives of the
free energy, we introduce a slightly more general setting.

Let α = (αij)i,j∈En and h = (hi)i∈En be two collections of real numbers (we write α ≥ 0 (resp.
h ≥ 0) as a shorthand for αij ≥ 0 (resp. hi ≥ 0) for all i, j ∈ En). For x ∈ An, we define the
Hamiltonian

Hn;α,h(x) =
1

n

∑
{i,j}∈Wn

αijxixj +
∑
i∈En

hixi . (3.1)

In analogy with (2.8) and (2.9), we denote by µn;α,h the Gibbs measure obtained from (3.1), by
En;α,h the corresponding expectation, and we set fn;α,h := 1

n2 lnZn;α,h to be the finite size free
energy. Observe that we recover the Hamiltonian (2.7) and the related Gibbs measure µn;α,h by
setting αij ≡ α, for all i, j ∈ En, and hi ≡ h, for all i ∈ En.

Let A ⊆ En be a given subset of edges. The GKS inequality deals with expectations and covari-
ances of random variables of the type xA :=

∏
i∈A xi, with the convention that x∅ = 1.
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Definition 3.1 (GKS inequality). The Gibbs measure µn;α,h on An satisfies the GKS inequality
if, for all A,B ⊆ En,

En;α,h(xAxB) ≥ En;α,h(xA) · En;α,h(xB) . (3.2)

Remark 3.2. Notice that, by choosing A = {i} and B = {j}, with i 6= j, from the GKS inequality
it follows that xi and xj are positively correlated under µn;α,h.

A useful link between the correlations of the system and the partial derivatives of the free energy
w.r.t. the parameters hi’s is provided by the MacLaurin expansion of the log moment generating
function of x ∈ An.

The coefficients of this expansion are the so-called Ursell functions, that are formally defined, for
` ∈ [n] and any choice of i1, . . . , i` ∈ En, by

u`(i1, . . . , i`) := n2∂hi1 ...hi`fn;α,h . (3.3)

For instance, this yields

u1(i) = En;α,h(xi), (3.4)
u2(i, j) = En;α,h(xixj)− En;α,h(xi)En;α,h(xj), (3.5)

u3(i, j, k) = En;α,h(xixjxk)− En;α,h(xi)En;α,h(xjxk)− En;α,h(xj)En;α,h(xixk)

− En;α,h(xk)En;α,h(xixj) + 2En;α,h(xi)En;α,h(xj)En;α,h(xk). (3.6)

Remark 3.3. Notice that the definition of the Ursell functions (3.3) necessarily passes through
the generalized setting with vector parameters α,h, of which they are functions. However, when
computed along the constant vectors α and h, with αij ≡ α for all i, j ∈ En, and hi ≡ h for all
i ∈ En, they are also useful to characterize the derivatives of the classical free energy fn;α,h through
the identities

n2∂h . . . h︸︷︷︸
` times

fn;α,h =
∑

i1,...,i`∈En

u`(i1, . . . , i`) , ∀` ∈ [n] . (3.7)

While the GKS inequality implies u2(i, j) ≥ 0, giving positive correlation between the random
variables xi and xj , the GHS inequality concerns the sign of the Ursell function u3(i, j, k).

Definition 3.4 (GHS inequality). The Gibbs measure µn;α,h on An satisfies the GHS inequality
if, for all i, j, k ∈ En, u3(i, j, k) ≤ 0 or, equivalently, if

En;α,h(xixjxk)− En;α,h(xi)En;α,h(xjxk)− En;α,h(xj)En;α,h(xixk)

− En;α,h(xk)En;α,h(xixj) + 2En;α,h(xi)En;α,h(xj)En;α,h(xk) ≤ 0. (3.8)

Observe that, in our case, u1(i) ≥ 0 trivially, due to the fact that xi ∈ {0, 1}. The rest of the
section is devoted to proving u2(i, j) ≥ 0 and u3(i, j, k) ≤ 0.

3.1. The FKG and GKS inequalities. We start with a preliminary result, the FKG inequality, that
will help us in deriving the more advanced inequalities (3.2) and (3.8).

We first show that the measure µn;α,h on An satisfies a proper lattice condition. Recall that An
is partially ordered by

x ≤ y if xi ≤ yi for all i ∈ En. (3.9)
Moreover, given two configurations x, y ∈ An, the (pointwise) maximum and minimum configura-
tions are defined as

(x ∨ y)(i) := max{xi, yi} and (x ∧ y)(i) := min{xi, yi},

for all i ∈ En. The following property holds true.
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Lemma 3.5. If α ≥ 0, then the Gibbs measure µn;α,h fulfills the FKG lattice condition

µn;α,h(x ∨ y)µn;α,h(x ∧ y) ≥ µn;α,h(x)µn;α,h(y) for x, y ∈ An. (3.10)

Proof : For a configuration z ∈ An, let Ez := {i ∈ En : zi = 1}, namely the set of edges present in
z. We have Ex∨y = Ex ∪ Ey and Ex∧y = Ex ∩ Ey. Observe that

• the edges in the configuration x∨y are the edges the configurations x and y have in common,
the edges present in configuration x only and those present in configuration y only;
• the edges in the configuration x∧y are the edges the configurations x and y have in common;
• the wedges in the configuration x ∨ y are the wedges the configurations x and y have in
common, the wedges present in configuration x (resp. configuration y) only and the wedges
you may create by superimposing the edges of the two configurations;
• the wedges in the configuration x ∧ y are the wedges the configurations x and y have in
common.

Therefore, verifying that (3.10) is satisfied reduces to show the validity of the inequality

exp

 1

n

∑
{i,j}∈E

αijxixj

 ≥ 1, (3.11)

where
E =

{
{i, j} : {i, j} ⊂ Ex∨y is a wedge and {i, j}

[
6⊂ Ex
6⊂ Ey

}
.

The conclusion follows as α ≥ 0 by assumption. �

An immediate consequence of Lemma 3.5 is the positive correlation of increasing random variables
(see Fortuin et al. (1971)). Specifically, if f and g are increasing functions on An (i.e., f(x) ≤ f(y)
if x ≤ y), then we obtain the FKG inequality

En;α,h(fg) ≥ En;α,h(f) · En;α,h(g) . (3.12)

Corollary 3.6. If α ≥ 0, then the Gibbs measure µn;α,h satisfies the GKS inequality.

Proof : Notice that for all A ⊆ En, the function xA =
∏
i∈A xi is increasing in x ∈ An. Hence, by

applying the FKG inequality (3.12) to the functions f(x) = xA and g(x) = xB, we immediately
derive (3.2). �

Remark 3.7. A straightforward adaptation of the arguments of Lemma 3.5 applies to general expo-
nential random graphs. We refer the reader to Section 4 for more details.

We now provide two useful consequences of the GKS inequality. To state properly the results we
need to introduce a few more notation; we need a suitable “restriction” of the system on a subset.

For A ⊆ En, set WA := {{i, j} : i, j ∈ A , i ∼ j} and define the Hamiltonian

HA;α,h(x) =
1

n

∑
{i,j}∈WA

αijxixj +
∑
i∈A

hixi . (3.13)

Let µA;α,h be the associated Gibbs measure, with normalizing constant ZA;α,h (partition function),
and let EA;α,h denote the corresponding expectation.

A first consequence of the GKS inequality is a form of monotonicity, with respect to the volume,
that can be established for the averages of xΛ, with Λ ⊆ En.

Lemma 3.8. If the Gibbs measure µn;α,h satisfies the GKS inequality then, for any Λ ⊆ A ⊆ B ⊆ En,

EA;α,h(xΛ) ≤ EB;α,h(xΛ) . (3.14)
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Proof : Observe first that, for all Λ ⊆ A ⊆ En, the function EA;α,h(xΛ) is non-decreasing in α.
Indeed, by differentiating EA;α,h(xΛ) w.r.t αij , we get

∂αijEA;α,h(xΛ) =
1

n
(EA;α,h(xΛxixj)− EA;α,h(xΛ)EA;α,h(xixj)) ≥ 0 , (3.15)

where the last inequality follows from the GKS inequality.
Now let WA,B := {{i, j} : i ∈ A , j ∈ B \A , i ∼ j} and, for s ∈ [0, 1], consider the Hamiltonian

HB;α(s),h(x) :=
1

n

∑
{i,j}∈WB\WA,B

αijxixj +
s

n

∑
{i,j}∈WA,B

αijxixj +
∑
i∈B

hixi ,

with corresponding Gibbs measure µB;α(s),h and relative average EB;α(s),h. Notice that, if s = 1,
we obtain the system on the set B, so that EB;α(1),h(xΛ) = EB;α,h(xΛ). Moreover, since WB =
WA tWB\A tWA,B, when s = 0, we get

HB;α(0),h(x) = HA;α,h(x) +HB\A;α,h(x) .

Then µB;α(0),h = µA;α,h · µB\A;α,h and, as a consequence, as Λ ⊆ A, we have EB;α(0),h(xΛ) =
EA;α,h(xΛ). Finally, since α 7→ EB;α,h(xΛ) is a non-decreasing mapping and α(0) < α(1), we
conclude

EA;α,h(xΛ) = EB;α(0),h(xΛ) ≤ EB;α(1),h(xΛ) = EB;α,h(xΛ) ,

as claimed. �

A second consequence of the GKS inequality is a comparison between partition functions.

Lemma 3.9. If the Gibbs measure µn;α,h satisfies the GKS inequality then, for any E,F ⊆ En,

ZE;α,hZF ;α,h ≤ ZE∪F ;α,hZE∩F ;α,h . (3.16)

Proof : We follow some ideas developed in Lebowitz (1974) to prove an analogous result for Ising
spin systems. We set K1 := E ∩ F , K2 := E \K1 and K3 := F \K1, so that we can express the
sets E, F , E ∪ F and E ∩ F as proper disjoint unions of the subsets Ki’s. With this notation, the
inequality (3.16) becomes equivalent to

L(α,h) := lnZK1∪K2∪K3;α,h − ln
ZK1∪K2;α,hZK1∪K3;α,h

ZK1;α,h
≥ 0 . (3.17)

Notice that, if there is no interaction between the edges in K1 and those in K3, then

ZK1∪K2∪K3;α,h = ZK1∪K2;α,hZK3;α,h and ZK1∪K3;α,h = ZK1;α,hZK3;α,h,

that yields L(α,h) = 0. To conclude, it suffices to show that the function L(α,h) is non-decreasing
with respect to the interaction parameter α. To this purpose, we consider the change in L(α,h),
when an interaction of strength αij , between the edges i ∈ K1 and j ∈ K3, is added to the system.
By differentiating w.r.t. αij we get

∂αijL(α,h) =
1

n
(EK1∪K2∪K3;α,h(xixj)− EK1∪K3;α,h(xixj)) ≥ 0 , (3.18)

where the last inequality follows from Lemma 3.8. All together this implies that L(α,h) ≥ 0. �

3.2. The GHS inequality. We are now ready to derive our main result: the GHS inequality for the
model associated with the Hamiltonian (3.1).

Theorem 3.10. If α,h ≥ 0, then the Gibbs measure µn;α,h satisfies the GHS inequality. In
particular, for any choice of i, j, k ∈ En, we have

∂hihjhkfn;α,h ≤ 0 . (3.19)
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Remark 3.11. The above theorem provides sufficient conditions for the validity of the GHS inequal-
ity, and it is then natural to wonder whether they are also necessary. A hint on this question is
given when considering the statement for indices i = j = k. Inequality (3.19) reduces to (see also
(3.8))

En;α,h(xi) (1− En;α,h(xi)) (1− 2En;α,h(xi)) ≤ 0 , (3.20)

that is verified if and only if

En;α,h(xi) ≥ 1/2 .

Recall that by (2.13) the above condition is fulfilled whenever α,h ≥ 0. This assumption is indeed
the only strict requirement on the parameter h that we will use along the proof, and precisely in
(3.38) below, though in a modified setting that requires the validity of this condition uniformly in
n. However, as mentioned in Subsection 2.3, the edge-occurrence probabilities are implicit functions
of the parameters α and h, and are also dependent on n. For these reasons, we believe that the
derivation of explicit necessary conditions could be in general a hard task.

The strategy of the proof is based on the trick of introducing a duplicate set of variables. Let
y ∈ An be an independent copy of x ∈ An, with the same Hamiltonian as in (3.1), and let E denote
the expectation with respect to the joint measure

µ(x, y) :=
exp {Hn;α,h(x) +Hn;α,h(y)}

Z2
n;α,h

. (3.21)

For any i ∈ En, define the variables zi = xi − yi and vi = 1
2(xi + yi). Notice that zi takes value on

{−1, 0,+1}, while vi takes value on
{

0, 1
2 , 1
}
, and that the following equivalence of events holds for

all i ∈ En:

{zi ∈ {−1,+1}} =

{
vi =

1

2

}
and {vi ∈ {0, 1}} = {zi = 0} . (3.22)

With standard notation we set z := (zi)i∈En and v := (vi)i∈En . Moreover, for any given A ⊆ En, we
define the functions zA :=

∏
i∈A zi and vA :=

∏
i∈A vi.

Proposition 3.12. Let α,h ≥ 0. Then, for any C,D ⊆ En, it holds that

E(zCzD) ≥ E(zC)E(zD) , (3.23)

E(zCvD) ≤ E(zC)E(vD) . (3.24)

Remark 3.13. It is easy to check that the Ursell function u3(i, j, k), given explicitly in (3.6), can be
written as a function of the random variables zi’s and vi’s as

u3(i, j, k) = E(zizjvk)− E(zizj)E(vk) . (3.25)

The statement of Theorem 3.10 is then a consequence of the inequality (3.24). Similarly, it can be
shown that Eq. (3.23) implies the GKS inequality for the Gibbs measure µn;α,h.

Proof of Proposition 3.12: We first consider two general functions Φ(z) and Ψ(v), with z = (zi)i∈En
and v = (vi)i∈En , and we try to express the average E(Φ(z)Ψ(v)) in a convenient form. Later we
will focus on the functions Φ(z) = zC and Ψ(v) = vD.

Observe that, due to the identity xixj + yiyj = 1
2zizj + 2vivj , the exponent of the joint measure

(3.21) can be phrased in terms of the variables z and v. It yields

Hn;α,h(x) +Hn;α,h(y) = Ĥ1
n;α(z) + Ĥ2

n;α,h(v), (3.26)
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where

Ĥ1
n;α(z) =

1

2n

∑
{i,j}∈Wn

αijzizj ,

Ĥ2
n;α,h(v) =

2

n

∑
{i,j}∈Wn

αijvivj + 2
∑
i∈En

hivi .

(3.27)

Moreover, by exploiting the constraints (3.22), we can partition the state space of the couple (z, v)
in a disjoint union, over subsets A ⊆ En, of the sets

SA :=

{
(z, v) : zi = 0, vi ∈ {0, 1} ∀i ∈ A and vi =

1

2
, zi ∈ {−1, 1} ∀i ∈ Ac

}
. (3.28)

Hence, we can write

E(Φ(z)Ψ(v)) =
∑
A⊆En

∑
(z,v)∈SA

Φ(z)Ψ(v)
exp

{
Ĥ1

n;α(z) + Ĥ2
n;α,h(v)

}
Z2
n;α,h

. (3.29)

It is easy to see that if (z, v) ∈ SA, and with the same notation introduced in (3.13), we obtain

Ĥ1
n;α(z) =

1

2n

∑
{i,j}∈WAc

αijzizj , with zi ∈ {−1, 1}, ∀i ∈ Ac (3.30)

and

Ĥ2
n;α,h(v) =

2

n

∑
{i,j}∈WA

αijvivj +
∑
i∈A

2hi +
1

n

∑
j∈Ac:j∼i

αij

 vi

+
1

2n

∑
{i,j}∈WAc

αij +
∑
i∈Ac

hi , with vi ∈ {0, 1}, ∀i ∈ A . (3.31)

In particular, on the set SA,
• the Hamiltonian Ĥ1

n;α(z) corresponds to the Hamiltonian of an Ising spin system on the
set Ac, with inverse temperature β := α/2n, magnetic field h = 0, and associated Gibbs
measure

µIs
Ac;β,0(z) :=

eH
Is
Ac;β,0(z)

ZIs
Ac;β,0

.

• the Hamiltonian Ĥ2
n;α,h(v) corresponds to the two-star Hamiltonian on A given in (3.13),

but with parameters α′ := 2α and h′ := (h′i)i∈En , where h
′
i := 2hi+

1
n

∑
j∈Ac:j∼i αij . Indeed,

the two Hamiltonians differ only for the constant term 1
2n

∑
{i,j}∈WAc

αij +
∑

i∈Ac hi that,
being irrelevant in the Gibbs measure, will be neglected. As before, we write µA;α′,h′ for the
Gibbs measure related to the Hamiltonian (3.31).

Going back to Eq. (3.29), in view of the previous considerations, it turns out that

E(Φ(z)Ψ(v)) =
∑
A⊆En

P (A)fΦ(A)gΨ(A), (3.32)

where, with self-explanatory notation, we set

fΦ(A) := EIs
Ac;β,0 (Φ(z)|zi=0,∀i∈A) , gΨ(A) := EA;α′,h′

(
Ψ(v)|vi= 1

2
,∀i∈Ac

)
(3.33)
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and

P (A) :=
ZIs
Ac;β,0 · ZA;α′,h′

Z2
n;α,h

. (3.34)

Notice that P is a probability on En by construction. Specializing the identity (3.32) to the functions
Φ(z) = zC and Ψ(v) = vD, with C,D ⊂ En, we get

E(zCvD) =
∑
A⊆En

P (A)EIs
Ac;β,0(zC |zi=0,∀i∈A)EA;α′,h′(vD|vi= 1

2
,∀i∈Ac) . (3.35)

The proof of the two inequalities (3.24) and (3.23) is an immediate application of the FKG
inequality relatively to P . Indeed, if α, h ≥ 0, then also β, α′,h′ ≥ 0, and the conditions for the
application of the FKG inequality are fulfilled:

• If β ≥ 0, the GKS inequality for ferromagnetic Ising systems in Friedli and Velenik (2018)
guarantees that the function EIs

Ac;β,0(zC |zi=0,∀i∈A) is non-increasing in A, for any choice of
C ⊆ En.
• If α′, h′ ≥ 0 the function EA;α′,h′(vD|vi= 1

2
,∀i∈Ac) is non-decreasing in A, for any choice of

D ⊆ En. This is a consequence of the GKS inequality together with Lemma 3.8. Indeed, let
A ⊆ B and observe that

EA;α′,h′(vD|vi= 1
2
,∀i∈Ac) =

1

2|D∩Ac|
EA;α′,h′(vD∩A)

EB;α′,h′(vD|vi= 1
2
,∀i∈Bc) =

1

2|D∩Bc|
EB;α′,h′(vD∩B) .

(3.36)

Since D ∩ A ⊆ D ∩ B by hypothesis, we can write vD∩B = vD∩AvD∩(B\A) and hence, from
the GKS inequality and Lemma 3.8,

EB;α′,h′(vD∩B) ≥ EB;α′,h′(vD∩A)EB;α′,h′(vD∩(B\A))

≥ EA;α′,h′(vD∩A)EA;α′,h′(vD∩(B\A)) .
(3.37)

We now recall that for α′ ≥ 0 and h′ ≥ 0, it holds that EA;α′,h′(vi) ≥ 1/2, for all i ∈ A
and A ⊆ En. Applying the GKS inequality to the second factor of the r.h.s of the above
equation, and using this bound, we then get

EA;α′,h′(vD∩(B\A)) ≥
∏

i∈D∩(B\A)

EA;α′,h′(vi) ≥
1

2|D∩(B\A)| . (3.38)

Putting together (3.36)-(3.38), we conclude that

EB;α′,h′(vD|vi= 1
2
,∀i∈Bc) ≥ EA;α′,h′(vD|vi= 1

2
,∀i∈Ac) . (3.39)

• If α ≥ 0, the probability P , defined in (3.34) and acting on subsets of En, satisfies the FKG
lattice condition, namely

P (E)P (F ) ≤ P (E ∪ F )P (E ∩ F ) , ∀E,F ⊆ En . (3.40)

According to the definition of P , the inequality (3.40) follows if the two inequalities

ZIs
E;β,0Z

Is
F ;β,0 ≤ ZIs

E∪F ;β,0Z
Is
E∩F ;β,0

and
ZE;α′,h′ZF ;α′,h′ ≤ ZE∪F ;α′,h′ZE∩F ;α′,h′

are simultaneously satisfied. The first inequality holds true as a consequence of the GKS
inequality for Ising spin systems with β ≥ 0 and magnetic field h ≥ 0 (see Lebowitz (1974),
Lemma on p. 90). The second inequality is instead verified thanks to Lemma 3.9.
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Therefore, as P obeys the FKG lattice condition, and the functions EIs
Ac;β,0(zC |zi=0,∀i∈A) and

EA;α′,h′(vD|vi= 1
2
,∀i∈Ac) are respectively non-increasing and non-decreasing in A, from Eq. (3.35) we

get

E(zCvD) ≤
∑
A⊆En

P (A)EIs
Ac;β,0(zC |zi=0,∀i∈A)

∑
A⊆En

P (A)EA;α′,h′(vD|vi= 1
2
,∀i∈Ac) = E(zC)E(vD) (3.41)

providing inequality (3.24). The inequality (3.23) can be obtained in the same way by setting
φ(z) = zCzD, so that gψ(A) = 1, and by observing that fφ(A) is non-decreasing in A, hence giving
the reverse inequality. �

Proof of Theorem 3.10. The statement follows readily from Remark 3.13 and Proposition 3.12. �

3.3. The GHS inequality for the two-star model. Let α, h ∈ R. Recall that the two-star model is
obtained, as a particular case, by setting αij ≡ α, for all i, j ∈ En, and hi ≡ h, for all i ∈ En, in
the Hamiltonian (3.1). This means that, whenever α, h ≥ 0, the GHS inequality holds true for the
Gibbs measure µn;α,h, given in (2.2).

Observe that, by differentiating the free energy fn;α,h w.r.t. h, we get the following identities in
terms of the Ursell functions (see also Remark 3.3)

n2∂hfn;α,h =
∑
i∈En

u1(i) , n2∂hhfn;α,h =
∑
i,j∈En

u2(i, j) ,

n2∂hhhfn;α,h =
∑

i,j,k∈En

u3(i, j, k) ,

and so on. Thus, not only the sign of each Ursell function provides a specific correlation inequality
between the random variables xi’s, but also it gives a definite sign to a derivative of the free energy.

A direct computation easily shows that, being a variance, the second order partial derivative of
fn;α,h w.r.t. h is always non-negative. Thus, proving that u2(i, j) ≥ 0 (GKS inequality) is useful to
know the covariance between xi and xj , but it is somehow irrelevant to the purpose of showing that
the free energy is a convex function of h. On the contrary, the GHS inequality (u3(i, j, k) ≤ 0) is
of particular importance, as it implies that the average edge density (2.10) is a concave function of
the parameter h at any fixed size of the graph.

Explicitly, setting mn(α, h) :=
En;α,h(En)

n2 , from the GKS and GHS inequalities we readily get

if α ≥ 0 ∂hmn(α, h) = ∂hhfn;α,h ≥ 0,
if α, h ≥ 0 ∂hhmn(α, h) = ∂hhhfn;α,h ≤ 0.

(3.42)

Beside their specific information, inequalities (3.42) provide an important tool to understand the
limiting behavior of the free energy and its derivatives, and hence to characterize the asymptotic
properties of the edge density. In particular, one can exploit convergence results on the derivatives
of convex functions to guarantee that limit and derivatives w.r.t. the external field commute, and
then obtain proper regularity conditions of the infinite size free energy. We build on the following
lemma.

Lemma 3.14 (Ellis (2006), Lem. V.7.5). Let (fn)n≥1 be a sequence of convex functions on an open
interval A of R such that f(t) = limn→+∞ fn(t) exists for every t ∈ A. Let (tn)n≥1 be a sequence
in A which converges to a point t0 ∈ A. If f ′n(tn) and f ′(t0) exist, then limn→+∞ f

′
n(tn) exists and

equals f ′(t0).

In view of the inequalities (3.42), the above lemma can be applied to the sequences (fn;α,h)n≥1

and (∂hfn;α,h)n≥1. Indeed, under the appropriate hypotheses on the parameters α and h, they are
respectively a sequence of convex and a sequence of concave functions. Exploiting the differentia-
bility properties of the infinite size free energy described in Subsection 2.4, we obtain immediately
the following convergence results.
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Lemma 3.15. Consider the two-star model with Hamiltonian (2.7).
(a) If α ≥ 0 and (α, h) ∈ U , then limn→+∞mn(α, h) exists and, in particular, it holds

lim
n→+∞

mn(α, h) = u∗(α, h) = ∂hfα,h.

(b) If α, h ≥ 0, then limn→+∞ ∂hmn(α, h) exists and, in particular, it holds

lim
n→+∞

∂hmn(α, h) = ∂hu
∗(α, h) = ∂hhfα,h.

Moreover, if (tn)n∈N is a sequence of real numbers such that limn→+∞ tn = 0, then we have

lim
n→+∞

∂hmn(α, h+ tn) = ∂hu
∗(α, h). (3.43)

Using arguments from statistical mechanics, the above results can be pushed forward to derive a
standard central limit theorem for the edge density.

Theorem 3.16 (CLT for En). For all α, h ≥ 0, it holds

√
2
En − En;α,h(En)

n

d−−→ N (0, v(α, h)) w.r.t. Pn;α,h, as n→ +∞,

where N (0, v(α, h)) is a centered Gaussian distribution with variance v(α, h) := ∂hu
∗(α, h).

Proof : We introduce the random variable

Vn :=
√

2
En − En;α,h(En)

n
,

with the ultimate goal of proving that its moment generating function converges to the one of a
Gaussian random variable with variance v(α, h). The key point is to relate the moment generating
function of Vn to the second order derivative of the cumulant generating function of En, which is
defined as

cn(t) :=
2

n2
lnEn;α,h[exp(tEn)] =

2

n2
ln
Zn;α,h+t

Zn;α,h
= 2 (fn;α,h+t − fn;α,h) .

From the existence of the infinite size free energy given by Theorems 4.1 and 6.4 in Chatterjee and
Diaconis (2013) (see also equation (2.11)), we obtain that for any (α, h) ∈ R2 and t ∈ R, the limit

c(t) := lim
n→+∞

cn(t) = 2 (fα,h+t − fα,h)

exists and is finite. Moreover, by a direct calculation, we get

c′n(t) =
2En;α,h+t (En)

n2
= mn(α, h+ t)

c′′n(t) =
2Varn;α,h+t(En)

n2
= ∂hmn(α, h+ t).

In particular, we have c′n(0) = mn(α, h) and c′′n(0) = ∂hmn(α, h). Moreover, by Lemma 3.15(b), we
obtain limn→+∞ c

′′
n(0) = ∂hu

∗(α, h) ≡ v(α, h) for all α, h ≥ 0.
Moving back to the moment generating function of Vn, we show now how to write it in terms of
c′′n(t). Consider t > 0 and set tn :=

√
2t/n. It yields

lnEn;α,h(exp(tVn)) = lnEn;α,h

(
exp(tnEn) exp

(
− tn√

2
mn(α, h)

))
=
n2

2
[cn(tn)− tnc′n(0)].
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Notice that, since cn(0) = 0, the term in square brackets is the difference between the function cn(tn)
and its first order Taylor expansion at zero. Therefore, by using Taylor’s theorem with Lagrange
remainder, one gets

lnEn;α,h(exp(tVn)) =
c′′n(t∗n)t2

2
,

for some t∗n ∈ [0,
√

2t/n]. Finally, if α, h ≥ 0, we can apply the convergence result (3.43) to infer
that limn→∞ c

′′
n(t∗n) = ∂hu

∗(α, h) ≡ v(α, h), concluding the proof. �

Remark 3.17. The previous proof is not a mimicking adaptation of the proof of the central limit
theorem for the edge density of the edge-triangle model provided in Bianchi et al. (2021). The
significant difference is that, in the present setting, the convergence (3.43) is a direct consequence of
the GHS inequality. When the latter inequality is not available, as in the case of the edge-triangle
model, different properties are needed to obtain (3.43), such as the uniform convergence of the
sequence of the second order derivatives of the free energy.

4. Discussion on possible extensions

The results presented in Lemmas 3.5–3.9 can be extended to the general case where the Hamil-
tonian is a function of the homomorphism densities of an arbitrary collection of subgraphs of the
graph G. In this Section we will briefly elaborate on this.

In the sequel, we will be dealing with the general Hamiltonian (2.3) and the corresponding Gibbs
probability density (2.2). We will denote by En;β the relative expectation. Moreover, as a standard
choice in the literature, we will set the subgraph H1 to be an edge.

Going through the proof of Lemma 3.5, it is easy to understand that the crucial condition for
the validity of the FKG lattice condition is inequality (3.11). When moving to the general setting
we are adopting, the analogous condition reads as

exp

n2
k∑
j=2

βjt(Hj , G)

 ≥ 1 . (4.1)

As consequence, since the homomorphism densities are non-negative, the FKG lattice condition is
in force whenever the parameters β2, . . . , βk are non-negative. Thus, we obtain the following result.

Lemma 4.1. For all β1 ∈ R and β2, . . . , βk ≥ 0, the Gibbs measure µn;β fulfills the FKG lattice
condition

µn;β(x ∨ y)µn;β(x ∧ y) ≥ µn;β(x)µn;β(y) for x, y ∈ An. (4.2)

Two immediate consequences of Lemma 4.1 are the positive correlation between increasing func-
tions of the configuration and, in turn, the GKS inequality for the Gibbs measure µn;β. Specifically,
for all β1 ∈ R and β2, . . . , βk ≥ 0, all increasing functions f and g, and all A,B ⊆ En, it holds

En;β(fg) ≥ En;β(f) · En;β(g) (FKG inequality) (4.3)

En;β(xAxB) ≥ En;β(xA) · En;β(xB), (GKS inequality) (4.4)

where xC =
∏
i∈C xi, for C ⊆ En.

An extension of Lemmas 3.8 and 3.9 to this general context is also straightforward. However,
while they were crucial to prove the GHS inequality for the two-star model, they are quite irrelevant
in the present setting, as the techniques used in Subsection 3.2 can not be replicated.

Indeed, when dealing with a generic exponential random graph, the trick of variable duplication
(3.21) does not work. The problem is twofold. On the one hand, in general the decomposition
(3.26) fails to exist, as mixed terms remain. Thus, it is not possible to factorize the joint measure of
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the doubled model and then characterize correlations exploiting averages over an Ising and an ERG
subsystem (see (3.29)). On the other hand, even if the joint measure factored out and the analog of
(3.29) were available, to conclude we would need FKG and GKS inequalities for Ising models with
multi-body interactions, that are not known.

However, if we specify the Ursell function u3(i, j, k), given in (3.6), in the special cases when
i = j = k and i = j 6= k, we obtain respectively

En;β(xi) (1− En;β(xi)) (1− 2En;β(xi))

and
Covn;β(xi, xj)(1− 2En;β(xi)).

Since Covn;β(xi, xj) ≥ 0, due to the GKS inequality (4.4), we can conjecture that the necessary
and sufficient condition for the GHS inequality to hold in the present general setting is again only
the requirement En;β(xi) ≥ 1/2.
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