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Abstract. We study the Hölderian regularity of Gaussian wavelets series and show that they dis-
play, almost surely, three types of points: slow, ordinary and rapid. In particular, this fact holds
for the Fractional Brownian Motion. Finally, we remark that the existence of slow points is specific
to these functions.

1. Introduction

Let B denote the standard Brownian motion on R. The Khinchin law of the iterated logarithm
Khintchine (1924) allows to control the behaviour of B at a given point, in the sense that for every
t ∈ R, it holds

lim sup
r→0

|B(t+ r)−B(t)|√
|r| log log |r|−1

=
√

2 (1.1)

on an event of probability one. As a direct application of Fubini’s theorem, one obtains that almost
surely, the set of points t ∈ R such that (1.1) holds, called ordinary points, has full Lebesgue
measure. This contrasts with the uniform Hölder condition obtained by Paul Lévy in 1937 which
states that the uniform modulus of continuity of B is of larger order: almost surely, one has

lim sup
r→0

sup
t∈[0,1]

|B(t+ r)−B(t)|√
|r| log |r|−1

=
√

2.

In particular, there exist exceptional points, called fast points, where the law of the iterated loga-
rithm fails. In 1974, Oray and Taylor studied how often this exceptional behaviour holds and proved
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especially that the Hausdorff dimension of the set{
t ∈ [0, 1] : lim sup

r→0

|B(t+ r)−B(t)|√
|r| log |r|−1

≥ λ
√

2
}

is given almost surely by 1− λ2 for every λ ∈ [0, 1], see Orey and Taylor (1974).
In the meanwhile, Kahane proposed in Kahane (1985) an easy way to study the regularity and

irregularity properties of the Brownian motion. Its method relies on the expansion of B on [0, 1] in
the so-called Faber-Schauder system. If Λ is the triangular function

Λ : x 7→


x if 1

2 ≤ x < 1

1− x if 0 ≤ x < 1
2

0 otherwise,

and ξ, ξj,k (j ∈ N0 and k ∈ {0, . . . , 2j−1}) are independent N (0, 1) random variables then, we have

B(t) =
∑
j∈N

2j−1∑
k=0

ξj,k2
−j/2Λ(2jt− k) + ξt (1.2)

where the convergence is almost surely uniform for t ∈ [0, 1]. Working with this expression, Kahane
recovered the law of the iterated logarithm and the estimation of the modulus of continuity of
the Brownian motion. Furthermore, Kahane obtained the existence of a third category of points,
presenting a slower oscillation. These points, called slow points, satisfy the condition

lim sup
r→0

|B(t+ r)−B(t)|√
|r|

< +∞.

The law of iterated logarithm and the study of the set of fast points has naturally been studied
and extended since then for more general classes of Gaussian processes such as Gaussian processes
with stationary increments, see e.g. Marcus (1968); Orey (1972); Bingham (1986); Marcus and
Rosen (1992); Monrad and Rootzén (1995); Khoshnevisan and Shi (2000). In particular, given a
fractional Brownian motion Bh of index h ∈ (0, 1), one has almost surely

lim sup
r→0

|Bh(t+ r)−Bh(t)|
|r|h
√

log log |r|−1
=
√

2

and

lim sup
r→0

sup
t∈[0,1]

|Bh(t+ r)−Bh(t)|
|r|h
√

log |r|−1
=
√

2.

However, unlike the Brownian motion, for more general Gaussian processes the existence of points
that present slower oscillations was not highlighted. The aim of this paper is to investigate this
question. In particular, we prove the fractional Brownian motion admits slow points.

In 1999, Meyer, Sellan and Taqqu introduced a famous decomposition of the fractional Brownian
motion using a Lemarié-Meyer or sufficiently smooth Daubechies wavelet ψ, which decorrelates the
high frequencies Meyer et al. (1999). More precisely, any fractional Brownian motion Bh of Hurst
index h ∈ (0, 1) can be written as

Bh(t) =
∑
j∈N

∑
k∈Z

2−hjξj,kψh+1/2(2jt− k) +R(t) (1.3)

where R is a smooth process, (ξj,k)(j,k)∈N×Z is a sequence of independent N (0, 1) random variables,
and ψα is defined by

ψ̂α(ξ) =
1

|ξ|α
ψ̂(ξ).

Note that such a function leads to a biorthogonal wavelet basis, see Section 2.



Slow, ordinary and rapid points for Gaussian Wavelets Series 1473

Motivated by the study of fractional Brownian motions using this particular decomposition, we
develop in this paper a systematic study of the different pointwise behaviours of random wavelets
series of the form

fh =
∑
j∈N

∑
k∈Z

ξj,k2
−hjψ(2j · −k) (1.4)

where (ξj,k)(j,k)∈N×Z denotes a sequence of independent N (0, 1) random variables, h ∈ (0, 1) is
fixed and ψ is any compactly supported or smooth wavelet, see Section 2 for a precise definition.
Note that, even if the expression (1.4) is very similar to (1.2), dealing with it requires much more
technical arguments. Indeed, due to the symmetry of the function Λ, most of the terms vanish in
the expansion of the increments B(t)−B(s) if s and t are close enough. This fact can not be used
anymore while working with an arbitrary wavelet and compensations of different terms may occur.

Concerning the regularity of the function fh, one can show, see Proposition 2.3 below, that, for
all s, t ∈ R,

E[(fh(t)− fh(s))2] ≤ C|s− t|2h,
for some deterministic constant C > 0. Applying Kolmogorov continuity Theorem for Gaussian
processes, one can deduce that almost surely, for every t ∈ R, one has

lim sup
r→0

|fh(t+ r)− fh(t)|
|r|h−ε

< +∞

for every ε > 0. The aim of this paper is to characterize more precisely the pointwise behaviour of
such a wavelet series, in the spirit of what is known for the Brownian motion. Recently, generalized
Hölder spaces have been introduced to address this kind of questions Kreit and Nicolay (2018);
Loosveldt and Nicolay (2021) as well as the regularity of solutions of partial differential equations
Loosveldt and Nicolay (2020). This article is the continuation of the work done in Ayache (2019);
Ayache et al. (2019); Kahane (1985) for the Brownian motion.

As a consequence of our results, we get that almost surely, the Hölder exponent of the random
wavelet series fh is h while it does not belong to the uniform Hölder space of order h. Nevertheless,
if t is a slow point, fh belongs to the pointwise Hölder space of order h at t. One can therefore
wonder if this feature is common or if it is specific to the functions under study in this paper. To
address this question, in Section 6 we recall two commonly used notions of genericity: the prevalence
and the Baire category point of view. We obtain that, in both senses, the existence of slow points
is a specific property of Gaussian random wavelets series.

The paper is structured as follows: in Section 2, before stating our main result, we recall the most
important tools used in the paper: discrete wavelet transform and modulus of continuity as well
as some fundamental inequalities. Section 3 is devoted to exploring the regularity of the Gaussian
random wavelet series (1.4) by identifying three precise pointwise estimates. In Section 4, we focus
on the irregularity that we deduce from the asymptotic behaviour of the wavelet coefficients. Then,
using the obtained results of regularity and irregularity, we prove our main result concerning the
existence of slow, ordinary and rapid points in Section 5. Finally, Section 6, focuses on the results
of generecity for slow points. In this paper, C stands for a deterministic constant not necessary the
same in different lines.

2. Preliminaries and statement of the main result

In this section, we present the notions needed for the statement of the main theorem and the first
result concerning the convergence of the wavelets series defined in (1.4).

Let us first briefly recall some definitions and notations about wavelets and biortogonal wavelets
(for more precisions, see e.g. Daubechies (1992); Meyer (1992); Mallat (2009); Cohen et al. (1992)).
Under some general assumptions, there exist two functions φ and ψ, called wavelets, which generate
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two orthonormal bases of L2(R), namely

{φ(· − k)}k∈Z ∪ {ψ(2j · −k) : j ∈ N, k ∈ Z}

and
{ψ(2j · −k) : j ∈ Z, k ∈ Z}.

Any function f ∈ L2(R) can be decomposed as follows,

f =
∑
k∈Z

Ckφ(· − k) +
∑
j∈N

∑
k∈Z

cj,kψ(2j · −k) =
∑
j∈Z

∑
k∈Z

cj,kψ(2j · −k)

where

cj,k = 2j
∫
R
f(x)ψ(2jx− k) dx

and

Ck =

∫
Rn
f(x)φ(x− k) dx.

Let us remark that we do not choose the L2(R) normalization for the wavelets, but rather an L∞(R)
normalization, which is better fitted to the study of the Hölderian regularity. Amoung the families
of wavelet basis that exist, we are mostly interested in two classes:

• The Lemarié-Meyer wavelets for which φ and ψ belong to the Schwartz class S(R), which
means that, for all m ∈ N0 and L > 0 we have

sup
x∈R

{
(3 + |x|)L

∣∣∣Dmψ(x)
∣∣∣}< +∞. (2.1)

• Daubechies wavelets for which φ and ψ are compactly supported functions.
In both cases, the first moment of the wavelet ψ vanishes.

The setting in which we work is more general that just orthogonal wavelet basis, so that it allows
to cover the important example supply by the fractional Brownian motion. Biorthogonal wavelet
bases are a couple of two Riesz wavelet bases of L2(R) generated respectively by ψ and ψ̃ and such
that

2j/22j
′/2

∫
R
ψ(2jx− k)ψ̃(2j

′
x− k′)dx = δj,j′δk,k′ .

In that case, any function f ∈ L2(R) can be decomposed as

f =
∑
j∈Z

∑
k∈Z

cj,kψ(2j · −k)

where

cj,k = 2j
∫
R
f(x)ψ̃(2jx− k)dx.

Wavelet bases and biorthogonal wavelet bases give a powerful tool to study the regularity and
irregularity of functions or signals belonging to numerous functional spaces, see e.g. Jaffard and
Meyer (1996); Meyer (1992); Bastin et al. (2016); Jaffard (2004a); Aubry and Bastin (2010); Jaffard
(2004b); Clausel and Nicolay (2011); Esser et al. (2017); Kreit and Nicolay (2018); Loosveldt and
Nicolay (2021). In this paper, they will be used to get irregularity properties in Section 4.

Let us now present two lemmata that allow to prove the uniform convergence on any compact
set of the series defined in (1.4), where ψ comes from any wavelet basis or biorthogonal wavelet
basis. The first one is very classical and the second one gives informations about the asymptotic
behaviour of a sequence of i.i.d Gaussian random variables.
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Lemma 2.1. There exists a constant C1 > 0 such that, for all x ∈ R∑
k∈Z

1

(3 + |x− k|)4
≤ C1.

Lemma 2.2. (Ayache and Bertrand, 2010; Ayache and Taqqu, 2003) Let (ξj,k)(j,k)∈N×Z be a se-
quence of independent N (0, 1) random variables. There are an event Ω∗ of probability 1 and a pos-
itive random variable C2 of finite moment of every order such that, for all ω ∈ Ω∗ and (j, k) ∈ Z2,
the inequality

|ξj,k(ω)| ≤ C2(ω)
√

log(3 + j + |k|) (2.2)

holds.

Let fh denote the process defined in (1.4). For all j ∈ N, we set

fh,j =
∑
k∈Z

ξj,k2
−hjψ(2j · −k).

Remark that, if inequality (2.2) holds then, thanks to Lemma 2.1 and the fast decay of the wavelet
and its derivative (or using the compactness of the support of ψ), the sum in the right-hand side
converges uniformly on any compact set, as well as the sum∑

k∈Z
ξj,k2

(1−h)jDψ(2j · −k). (2.3)

Therefore, for all j, fh,j is continuously differentiable with derivative Dfh,j given by (2.3). In
particular, the process fh is well defined and bounded on the event Ω∗ of probability 1. In the
following, we will hence work on this event without mentioning it explicitly.

Using similar arguments, the following Proposition gives us a first information concerning the
regularity of the function fh.

Proposition 2.3. Let fh be the random wavelet series defined in (1.4). If ψ is continuously differ-
entiable, there exists a constant C > 0 such that, for all s, t ∈ R

E[(fh(t)− fh(s))2] ≤ C|s− t|2h.

Proof : From the independence of the centred random variables in (ξj,k)(j,k)∈N×Z, we have

E[(fh(t)− fh(s))2] =
∑
j∈N

∑
k∈Z

2−2hj(ψ(2jt− k)− ψ(2js− k))2.

Let us fix t and assume that s and ν ∈ Z are such that

2−ν < |t− s| ≤ 2−ν+1.

For all j ≤ ν, we set
Fj,t : x 7→

∑
k∈Z

2−2hj(ψ(2jt− k)− ψ(2jx− k))2.

Let us then remark that Fj,t is continuously differentiable on any compact set. If ψ is compactly
supported, this is obvious. Otherwise, it comes from the fast decay of ψ and Lemma 2.1. In any
case, by the mean value theorem, there exists x1 between s and t such that

|Fj,t(s)− Fj,t(t)| =
∣∣∣(s− t)∑

k∈Z
2(1−2h)j2(ψ(2jt− k)− ψ(2jx1 − k))Dψ(2jx1 − k)

∣∣∣
≤ C

∣∣∣(s− t)∑
k∈Z

2(1−2h)j(ψ(2jt− k)− ψ(2jx1 − k))
∣∣∣.
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Applying again the mean value theorem to the function

gj : x 7→
∑
k∈Z

2(1−2h)jψ(2jx− k),

we get
|Fj,t(s)− Fj,t(t)| ≤ C|s− t|22(2−2h)j

because ∑
k∈Z

Dψ(2jt− k)

can be uniformly bounded, by the fast decay and Lemma 2.1 or using the compact support of ψ.
With the same argument, we also get, for all j > ν,∣∣∣∑

k∈Z
2−2hj(ψ(2jt− k)− ψ(2js− k))2

∣∣∣ ≤ 2−2hj
∑
k∈Z

2((ψ(2jt− k))2 + (ψ(2js− k))2)

≤ C2−2hj .

Putting all of these together, we have

E[(fh(t)− fh(s))2] =
∑
j≤ν

∑
k∈Z

2−2hj(ψ(2jt− k)− ψ(2js− k))2

+
∑
j>ν

∑
k∈Z

2−2hj(ψ(2jt− k)− ψ(2js− k))2

≤ C(|s− t|2
∑
j≤ν

2(2−2h)j +
∑
j>ν

2−2hj)

≤ C(|s− t|22(2−2h)ν + 2−2hν)

≤ C|s− t|2h.

�

From the last proposition and Kolmogorov continuity Theorem for Gaussian processes, we know
that the sample paths of fh are almost surely locally Hölder-continuous of order h−ε for every ε > 0.
Our aim in this paper is to give more precise information concerning the regularity of fh. In order
to state it, we recall finally that a modulus of continuity is an increasing function ω : R+ → R+

satisfying ω(0) = 0 and for which there is C > 0 such that ω(2x) ≤ Cω(x) for all x ∈ R+.
Wavelet characterizations of regularity require the following additional regularity property for

moduli of continuity, see Jaffard and Meyer (1996): A modulus of continuity ω is regular if there is
N ≥ 0 such that 

∞∑
j=J

2Njω(2−j) ≤ C2NJω(2−J)

J∑
j=−∞

2(N+1)jω(2−j) ≤ C2(N+1)Jω(2−J)

(2.4)

for all J ≥ 0. Our main result will use three different regular moduli of continuity:
• the modulus of continuity ωr of the rapid points is defined by

ω(h)
r (x) = |x|h

√
log |x|−1

• the modulus of continuity ωo of the ordinary points is defined by

ω(h)
o (x) = |x|h

√
log log |x|−1
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• the modulus of continuity ωs of the slow points is defined by

ω(h)
s (x) = |x|h.

Theorem 2.4. Almost surely, the random wavelets series defined in (1.4) satisfies the following
property for every non-empty interval I of R:

• For almost every t ∈ I,

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
o (|s− t|)

< +∞ (2.5)

and if ω is a modulus of continuity such that ω = o(ω
(h)
o ), then

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|)

= +∞, (2.6)

Such points are called ordinary points.
• There exists t ∈ I such that

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
r (|s− t|)

< +∞ (2.7)

and if ω is a modulus of continuity such that ω = o(ω
(h)
r ), then

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|)

= +∞, (2.8)

Such points are called rapid points.
• There exists t ∈ I such that

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
s (|s− t|)

< +∞. (2.9)

and if ω is a modulus of continuity such that ω = o(ω
(h)
s ), then

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|)

= +∞. (2.10)

Such points are called slow points.

Remark 2.5. Theorem 2.4 is stated in full generality but let us already emphasize that it can be
improved while considering compactly supported wavelets. Indeed, in this case, one can show the
strict positiveness of the limits in (2.5), (2.7) and (2.9), see Remark 5.2 below.

Theorem 2.4 generalises the famous result of Kahane about the different pointwise behaviours of
the Brownian motion, see Kahane (1985, Theorem 3 in Chapter 16). Moreover, it can be applied
to the random wavelet series in (1.3), hence it proves the existence of the three types of points for
the fractional Brownian motion. As already stated in the introduction of this paper, the existence
of rapid and ordinary points for the fractional Brownian motion is already known. Thus, our
contribution concerning the knowledge of the pointwise behaviour of this process is the existence
of slow points. In particular, the reader should note that wavelet theory is, up to now and our
knowledge, the only tool to emphasize the existence of such points for the fractional Brownian
motion.

Remark 2.6. A good tool to determine the regularity of a locally bounded function f at a point t
is to compute its Hölder exponent hf (t). If α > 0, we say that f belongs to the pointwise Hölder
space Cα(t) if there exists a polynomial Pt of degree strictly less than α and a constant C > 0 such
that, for all j ∈ N,

sup
x∈B(x0,2−j)

|f(x)− Pt(x)| ≤ C2−αj .



1478 Céline Esser and Laurent Loosveldt

It is straightforward to show that, as soon as α < β, Cβ(t) ⊆ Cα(t). Therefore, we define the
pointwise Hölder exponent of f at point t by

hf (t) = sup{α > 0 : f ∈ Cα(t)}.

Theorem 2.4 tells us in particular that, if t is an ordinary or rapid point, then, for all ε > 0,
fh ∈ Ch−ε(t) and fh /∈ Ch(t) which gives hfh(t) = h. On the contrary, if t is a slow point, fh ∈ Ch(t)

while, for all ε > 0, fh /∈ Ch+ε(t) and so, again, hfh(t) = h. In fact, the finiteness of the limits
(2.5), (2.7) and (2.9) means that the function f belongs to a generalized pointwise Hölder space
Kreit and Nicolay (2018); Loosveldt and Nicolay (2021) associated to the corresponding modulus
of continuity.

The next sections are dedicated to the proof of this result. Any open interval in R can be written
as a countable union of dyadic intervals. Then, to prove Theorem 2.4, it is sufficient to show that,
for all dyadic interval of the form λj,k = [k2−j , (k + 1)2−j) with j ∈ N, k ∈ Z, there exist an event
Ωj,k of probability 1 such that, for all ω ∈ Ωj,k, almost every t ∈ λj,k is ordinary and there exist
tr ∈ λj,k which is rapid and ts ∈ λj,k which is slow. For the sake of simpleness in notation, we will
only do the proofs in full details for λ0,0 = [0, 1). In fact, after dilatations and translations, our
proofs hold true for any arbitrary dyadic interval. Note also that the proofs will be done in the
case where the wavelet ψ is in the Schwartz class; it can easily be adapted and simplified if ψ is
compactly supported.

3. Regularity properties

In this section, we establish inequalities (2.5), (2.7) and (2.9). Concerning rapid and ordinary
points, the conduct of the proof is similar. First we use Lemma 2.2 to bound the coefficients in (1.4).
Then we use the fast decay of the wavelet to measure the contribution of the coefficients associated
to dyadic intervals that are far away from the point of interest t in the difference |fh(s) − fh(t)|.
These are rather classic techniques of wavelet theory. The more challenging part concerns the
proof of the existence of slow points. In this purpose, we take advantage of a procedure initiated
by Kahane in Kahane (1985) to identify points for which we can obtain more precise information
concerning the coefficients of the “closest” intervals while we still use Lemma 2.2 and the fast decay
for the “furthest” one. This part uses more specific arguments and highlight the benefit we have to
work with a wavelet expansion with independent coefficients.

3.1. Rapid points. To prove the existence of rapid points, we apply Lemma 2.2 and get an uniform
modulus of continuity for the function fh. We deal with the coefficients associated to furthest
intervals thanks to the following lemma.

Lemma 3.1. There exists a constant C1 > 0 such that, for all j ∈ N0 and x ∈ (0, 1),∑
|k|>2j+1

√
log(3 + j + |k|)

(3 + |2jx− k|)5
≤ C1

Proof : Let us fix j ∈ N0 and x ∈ (0, 1). As |k| > 2j+1, obviously, k
2j

/∈ (−2, 2) so let n ∈
Z \ {0,±1,−2} be such that n2j ≤ k < (n+ 1)2j . Now, as x ∈ (0, 1), we have

|2jx− k| ≥ 2j |x− n| − 1 ≥ 2j(|n| − 1)− 1 ≥ |k|
2
− 1.

Thus, for all such j, k and x, we have√
log(3 + j + |k|)

(3 + |2jx− k|)
≤ 2

√
log(3 + 2|k|)
|k|
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and we conclude using the boundedness of the function x 7→
√

log(3+2x)

x on [1,+∞[ and Lemma
2.1. �

Proposition 3.2. Almost surely, there exists a constant C1 > 0 such that, for all t, s ∈ (0, 1) we
have

|fh(s)− fh(t)| ≤ C1|t− s|h
√

log |t− s|−1.

In particular, one has almost surely

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
r (|s− t|)

< +∞

for every t ∈ (0, 1).

Proof : Let us assume that t, s and ν ∈ N are such that

2−ν < |t− s| ≤ 2−ν+1.

For all j ≤ ν, by the mean value theorem, there exists x between s and t such that

|fh,j(t)− fh,j(s)| ≤ |t− s||Dfh,j(x)| (3.1)

and, it follows that

|Dfh,j(x)| ≤ CC22(1−h)j
( ∑
|k|≤2j+1

√
log(3 + j + |k|)

(3 + |2jx− k|)4

+
∑

|k|>2j+1

√
log(3 + j + |k|)

(3 + |2jx− k|)5

)
,

using (2.2) and the fast decay property (2.1) with m = 1 and L = 4, for the first sum, and L = 5,
for the second one.

We bound the second sum by Lemma 3.1 while, for the first sum, we have∑
|k|≤2j+1

√
log(3 + j + |k|)

(3 + |2jx− k|)4
≤ C

∑
|k|≤2j+1

√
j

(3 + |2jx− k|)4
≤ C

√
j

by Lemma 2.1. Thus, we obtain

|
∑
j≤ν

(fh,j(t)− fh,j(s))| ≤ CC2|t− s|2(1−h)ν√ν

≤ CC2(ω)|t− s|h
√

log |t− s|−1.

Now, if j > ν, by splitting the sums in the same way, we also have

|fh,j(t)| ≤ CC22−hj
√
j and |fh,j(s)| ≤ CC22−hj

√
j

which obviously leads to

|
∑
j>ν

fh,j(t)| ≤ CC2|t− s|h
√

log |t− s|−1

and
|
∑
j>ν

fh,j(s)| ≤ CC2|t− s|h
√

log |t− s|−1.

The conclusion follows immediately. �
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3.2. Ordinary points. To establish the existence of ordinary points, we need to introduce some
notations. If j ∈ N0, and t ∈ (0, 1), we denote by kj(t) the unique positive integer in {0, . . . , 2j − 1}
such that t ∈ [kj(t)2

−j , (kj(t) + 1)2−j). We also define, for all n ∈ N the set

κtj(n) = {k ∈ Z : |k − kj(t)| ≤ n}

The main proof of this section consists in applying Lemma 2.2 to a sequence of independent N (0, 1)
random variables indexed from kj(t). Then, Lemmata 3.3 and 3.4 help us to deal with the coefficients
associated with the furthest intervals.

Lemma 3.3. There exists a constant C1 > 0 such that, for all j ∈ N0, t ∈ (0, 1) and x ∈ (0, 1) such
that |t− x| ≤ 2−j+1 we have ∑

k/∈κtj(j)

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)5
≤ C1

Proof : Let us fix j ∈ N0, t ∈ (0, 1) and x ∈ (0, 1) such that |t − x| ≤ 2−j+1. If
k /∈ κtj(j), we immediately have |2jx − kj(t)| ≤ 3 and thus |2jx − k| ≥ |kj(t) − k| − 3. There-
fore, √

log(3 + j + |k − kj(t)|)
(3 + |2jx− k|)

≤
√

log(3 + 2|k − kj(t)|)
|kj(t)− k|

and the conclusion follows just as in Lemma 3.1. �

Lemma 3.4. There exists a constant C1 > 0 such that, for all j ∈ N0, t ∈ (0, 1) and s ∈ (0, 1) such
that |2js− kj(t)| ≤ j we have

∑
k/∈κtj(2j)

√
log(3 + j + |k − kj(t)|)

(3 + |2js− k|)5
≤ C1

Proof : Let us fix j ∈ N0 t ∈ (0, 1) and s ∈ (0, 1) such that |2js−kj(t)| ≤ j. If k /∈ κtj(2j), of course,
|2js− kj(t)| < |k−kj(t)|

2 and thus |2js− k| ≥ |k−kj(t)|2 . It follows that√
log(3 + j + |k − kj(t)|)

3 + |2js− k|
≤ 2

√
log(3 + 2|k − kj(t)|)
|k − kj(t)|

and, again, we conclude just as in Lemma 3.1. �

Proposition 3.5. Almost surely, for almost every t ∈ (0, 1),

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
o (|t− s|)

< +∞.

Proof : Let us fix t ∈ (0, 1), and j ∈ N0 and let 0 ≤ kj(t) < 2j be such that t ∈ [kj(t)2
−j , (kj(t) +

1)2−j [. A simple modification of Lemma 2.2 insure us the existence of a positive random variable
Ct of finite moment of every order such that, almost surely

|ξj,k| ≤ Ct
√

log(3 + j + |k − kj(t)|). (3.2)

As previously, if s ∈ (0, 1) and ν ∈ N is such that

2−ν < |t− s| ≤ 2−ν+1,
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we first start by considering, for all j ≤ ν ,|Dfh,j(x)| for a x between s and t. In this case, we have

|Dfh,j(x)| ≤ CCt2(1−h)j
( ∑
k∈κtj(j)

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)4

+
∑

k/∈κtj(j)

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)5

)
,

using (3.2) and the fast decay property (2.1) with m = 1 and L = 4, for the first sum, and L = 5,
for the second one.

We bound the second sum by Lemma 3.3, while, for the first sum, we have∑
k∈κtj(j)

√
log(3 + j + |k − kj(t)|)

(3 + |2jx− k|)4
≤ C

∑
k∈κtj(j)

√
log(j)

(3 + |2jx− k|)4
≤ C

√
log(j)

by Lemma 2.1. These inequalities lead to

|
∑
j≤ν

(fh,j(t)− fh,j(s))| ≤ CCt|t− s|h
√

log log |t− s|−1. (3.3)

To bound |fh,j(t)|, for all j > ν, we use the same techniques and get

|
∑
j>ν

fh,j(t)| ≤ CCt|t− s|h
√

log log |t− s|−1.

The bound for |fh,j(s)| is a little bit more tricky. As |2js− kj(t)| ≤ 2j−ν+2, we first consider the
case when 2j−ν+2 ≤ j. Then, using again (3.2) and the fast decay property (2.1) in the same way,
we get

|fh,j(s)| ≤ CCt2−hj
( ∑
k∈κtj(2j)

√
log(3 + j + |k − kj(t)|)

(3 + |2js− k|)4

+
∑

k/∈κtj(2j)

√
log(3 + j + |k − kj(t)|)

(3 + |2js− k|)5

)
.

The second sum is this time bounded using Lemma 3.4 while we again use Lemma 2.1 to get∑
k∈κtj(2j)

√
log(3 + j + |k − kj(t)|)

(3 + |2js− k|)4
≤ C

√
log(j).

Now, if j < 2j−ν+2, we use one last time (3.2) and the fast decay property (2.1) in the same way to
get

|fh,j(s)| ≤ CCt2−hj
( ∑
k∈κsj(2j−ν+2)

√
log(3 + j + |k − kj(t)|)

(3 + |2js− k|)4

+
∑

k/∈κsj(2j−ν+2)

√
log(3 + j + |k − kj(t)|)

(3 + |2js− k|)5

)
.

As |kj(s)− kj(t)| ≤ 2j−ν+1 + 2, for all k ∈ κsj(2j−ν+2) we have

log(3 + j + |k − kj(t)|) ≤ log(3 + j + |kj(s)− kj(t)|+ |k − kj(s)|) ≤ log(4.2j−ν+2)
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while, for all k /∈ κsj(2j−ν+2),√
log(3 + j + |k − kj(t)|)

(3 + |2js− k|)
≤ log(3 + j + |kj(s)− kj(t)|+ |k − kj(s)|)

|k − kj(s)|

≤ log(4|k − kj(s)|)
|k − kj(s)|

≤ C
which gives us, thanks to Lemma 2.1,

|fh,j(s)| ≤ CCt2−hj
√
j − ν. (3.4)

In total, using (3.3) and (3.4), we get

|
∑
j>ν

fh,j(s)| ≤
∑
j>ν

CCt2
−hj√j − ν√log(j)

≤ CCt|t− s|h
√

log log |t− s|−1.

The conclusion comes from Fubini’s Theorem. �

3.3. Slow points.

3.3.1. An iterative procedure for slow points. The following procedure is inspired by the one ini-
tially described by Kahane in Kahane (1985) to identify slow points for the Brownian motion. We
generalize it here by introducing an extra parameter m ∈ N in order to use it for any1 h > 0. Some
clarifications are also made.

If µ ∈ N, ξ ∼ N (0, 1) and l ∈ N0, we set

pl(µ) = P(2lµ < |ξ| ≤ 2l+1µ).

For all j, l ∈ N0 and 0 ≤ k < 2j , we define

Sµj,l = {k ∈ {0, . . . , 2j − 1} : 2lµ < |ξj,k| ≤ 2l+1µ}

and
Λj,l(k) = {k′ ∈ {0, . . . , 2j − 1} : |k − k′| ≤ 2ml}.

Note that #Λj,l(k) ≤ 2ml+1 + 1. For all j ∈ N0, we define a closed set from the dyadic intervals
[k2−j , (k + 1)2−j ] for which k belongs to the set

Iµj = {k ∈ {0, . . . , 2j − 1} : ∀l ∈ N0, Λj,l(k) ∩ Sµj,l = ∅},

namely, we consider
Fµj =

⋃
k∈Iµj

[k2−j , (k + 1)2−j ].

We want to show that, almost surely, there exists µ ∈ N such that

Sµlow =
⋂
j∈N0

Fµj 6= ∅

which is equivalent to the fact that, for all J ∈ N0,

Sµlow,J =
⋂
j≤J

Fµj

1Kahane only considered the case h = 1
2
and so its construction is made with m = 3 which is sufficient to fulfil

the condition h > 1
m

we will need afterwards.
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is non-empty, as (Sµlow,J)J∈N0 is a decreasing sequence of compact sets. In other words, if we denote
by Nµ

J the number of subintervals of Sµlow,J , we want to show that

P(
⋃
µ∈N

⋂
J∈N0

{Nµ
J ≥ 1}) = 1.

For this purpose, we will consider sufficiently large µ such that the inequality

+∞∑
l=0

(2ml+1 + 1)(pl(µ) + l
√
pl(µ)(1− pl(µ))) <

1

4
(3.5)

holds. Moreover, if J1 is fixed, let us remark that the construction of Sµlow,J1 needs to consider at
most

∑J1
j=0 2j i.i.d. N (0, 1) random variables and, by increasing µ if necessary, one can choose to

remove the intervals [0, 2−J1 ] and [1 − 2−J1 , 1] from Sµlow,J1 at this step if necessary while making
P(Nµ

J1
≥ (3

2)J1) as close to 1 as we want. This trick helps us to start our construction with a
arbitrary close to 1 “initial value” of probability and to make sure that, at the end, the resulting
points will differ from 0 and 1.

Lemma 3.6. For all µ ∈ N sufficiently large such that condition (3.5) holds, the sequence (Nµ
J )J∈N0

of random variables satisfies the formula

P(Nµ
J+1 ≥ (

3

2
)J+1) ≥ (1− (

2

3
)J)P(Nµ

J ≥ (
3

2
)J), ∀J ∈ N0. (3.6)

Proof : For all J , we define2

IµJ = {k ∈ {0, . . . , 2J − 1} : [k2−J , (k + 1)2−J ] ⊆ Sµlow,J},

and remark that IµJ+1 is obtained by removing from 2IµJ ∪2IµJ +1 the elements k ∈ {0, . . . , 2J+1−1}
such that ΛJ+1,l(k) ∩ SµJ+1,l 6= ∅ for a l ∈ N0. But now, for all such a l, if B(n, p) stands for a
binomial random variable with n trials with success probability p, and Nµ

J = N ,

#(SµJ+1,l ∩ (2IµJ ∪ 2IµJ + 1)) ∼ B(2N, pl(µ)).

Therefore, we have, by Chebyshev’s inequality, that

#(SµJ+1,l ∩ (2IµJ ∪ 2IµJ + 1)) ≤ 2N(pl(µ) + (l + 1)
√
pl(µ)(1− pl(µ)))

with probability greater than 1− (l + 1)−2N−1. Thus the number of removed k is bounded by

2N

+∞∑
l=0

(2ml+1 + 1)(pl(µ) + l
√
pl(µ)(1− pl(µ)))

with probability greater than 1−N−1. Now, with condition (3.5), we get, for all J ,

P(Nµ
J+1 ≥

3

2
NJ |Nµ

J = N) ≥ 1−N−1

2We obviously have Nµ
J = #IµJ .
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which gives us

P(Nµ
J+1 ≥ (

3

2
)J+1) ≥ P((Nµ

J+1 ≥
3

2
Nµ
J ) ∩ (Nµ

J ≥ (
3

2
)J))

=
∑

N≥( 3
2

)J

P(Nµ
J+1 ≥

3

2
NJ |Nµ

J = N)P(Nµ
J = N)

≥
∑

N≥( 3
2

)J

(1−N−1)P(Nµ
J = N)

≥ (1− (
2

3
)J)

∑
N≥( 3

2
)J

P(Nµ
J = N)

= (1− (
2

3
)J)P(Nµ

J ≥ (
3

2
)J).

�

Proposition 3.7. Almost surely, there exists µ ∈ N such that (0, 1) ∩ Sµlow 6= ∅.

Proof : From formula (3.6), if µ is large enough we deduce by induction that for all J1, J with
J1 ≤ J ,

P(Nµ
J ≥ 1) ≥ P(Nµ

J ≥ (
3

2
)J)

≥ P(Nµ
J1
≥ (

3

2
)J1)

( J−1∏
j=J1

(1− (
2

3
)j)
)
.

Let us remark that, as
∑∞

j=1(2
3)j <∞, the infinite product

∏∞
j=1(1− (2

3)j) converges to a non-zero
limit and

lim
J1→+∞

+∞∏
j=J1

(1− (
2

3
)j) = 1.

Now, for all 0 < ε < 1
2 , one can choose J1 such that

+∞∏
j=J1

(1− (
2

3
)j) > 1− ε

and, by increasing µ if necessary, we can choose to remove the intervals [0, 2−J1 ] and [1 − 2−J1 , 1]
from Sµlow,J1 , if necessary and assume

P(Nµ
J1
≥ (

3

2
)J1) > 1− ε.

Therefore, as the sequence of events ({Nµ
J ≥ 1})J∈N0 is decreasing, we get

P
( ⋂
J∈N0

(Nµ
J ≥ 1)

)
≥ P(Nµ

J1
≥ (

3

2
)J1)

( ∞∏
j=J1

(1− (
2

3
)j)
)
> (1− ε)2.

In total, we have shown that, for all 0 < ε < 1
2 ,

P
( ⋃
µ∈N

⋂
J∈N0

(Nµ
J ≥ 1)

)
> (1− ε)2

and the conclusion follows immediately. �
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3.3.2. Existence of slow points. Now, using this iterative procedure, we establish the existence of
points satisfying inequality (2.9). In this section, it will be convenient to write

fh,j =
∑
n∈Z

f
[n]
h,j (3.7)

where, for all n ∈ Z,

f
[n]
h,j =

(n+1)2j−1∑
k=n2j

ξj,k2
−hjψ(2j · −k)

is the partial sum involving the k for which the corresponding dyadic interval
[k2−j , (k + 1)2−j) is included in [n, n+ 1).

Proposition 3.8. Almost surely, there exists t ∈ (0, 1) such that

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
s (|t− s|)

< +∞.

Proof : Let us fix m ∈ N0 such that h ≥ 1/m. The iterative procedure with m gives that almost
surely, (0, 1)∩ Sµlow 6= ∅. Now let t ∈ (0, 1)∩ Sµlow. There exists r > 0 such that [t− r, t+ r] ⊂ (0, 1)
and so, let us take s ∈ [t− r, t+ r] and ν ∈ N be such that

2−ν < |t− s| ≤ 2−ν+1.

We are going to estimate from above |fh(t)− fh(s)|.
For all j ≤ ν, once again, by the mean value theorem, there exists x between s and t such that

|fh,j(t)− fh,j(s)| ≤ |s− t||Dfh,j(x)|.

To bound |Dfh,j(x)|, we will use the decomposition (3.7). For n = 0, if 0 ≤ l ≤ dj/me, 0 ≤ k < 2j

and |kj(t)− k| ≤ 2ml, then necessarily |ξj,k| ≤ 2lµ. Thus, if we set

Λ0
j (t) = {0 ≤ k < 2j : |kj(t)− k| ≤ 1}

and, for all 1 ≤ l ≤ dj/me

Λlj(t) = {0 ≤ k < 2j : 2m(l−1) < |kj(t)− k| ≤ 2ml},

we have, using the fast decay property (2.1) with m = 1 and L = 5,

|Df [0]
h,j(x)| ≤ 2(1−h)j

dj/me∑
l=0

∑
k∈Λl(t)

|ξj,k||Dψ(2jx− k)| (3.8)

≤ C2(1−h)j

dj/me∑
l=0

∑
k∈Λlj(t)

2lµ
1

(3 + |2jx− k|)5
. (3.9)

As, for l ≥ 1 and k ∈ Λlj(t), |2jx− k| ≥ |kj(t)− k| − 3 > 2m(l−1) − 3, we obtain

|Df [0]
h,j(x)| ≤ Cµ2(1−h)j

2j−1∑
k=0

1

(3 + |2jx− k|)4
.
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Now, there exists3 Ct > 0, such that, for all n 6= 0 and n2j ≤ k < (n + 1)2j − 1, we have
|2jx− k| ≥ Ct|n|2j , which gives, using similarly the fast decay property (2.1),

|Df [n]
h,j(x)| ≤ CC22(1−h)j

(n+1)2j−1∑
k=n2j

1

(3 + |2jx− k|)4

√
log(3 + j + |k|)
Ct|n|2j

≤ CC22(1−h)j

(n+1)2j−1∑
k=n2j

1

(3 + |2jx− k|)4
.

Let us define the random variable Cµ = max(C2, µ). By Lemma 2.1, we obtain, for all j ≤ ν,

|fh,j(t)− fh,j(s)| ≤ Cµ2(1−h)j |s− t|
and thus

|
∑
j≤ν

(fh,j(t)− fh,j(s))| ≤ CCµ2(1−h)ν |s− t|

≤ CC∗µ|s− t|h. (3.10)

Now, we consider the terms for j > ν and we will bound separately |fh,j(t)| and |fh,j(s)|. For
|fh,j(t)|, we just have to repeat the same procedure, using the set Λlj(t) to estimate |f [0]

h,j(t)| and
Lemma 2.2 for |f [n]

h,j(t)| with n 6= 0. We then conclude that

|
∑
j>ν

fh,j(t)| ≤ C
∑
j>ν

Cµ2−hj

≤ CCµ2−hν

≤ CCµ|t− s|h

For |fh,j(s)|, the strategy remains the same: nothing changes to bound |f [n]
h,j(s)| with n 6= 0 while,

for n = 0, if l is the greatest integer such that |s − t| ≥ 2ml2−j , the construction insures that, for
all 1 ≤ l′ ≤ dj/me and k ∈ Λl

′
j (s),

|ξj,k| ≤ 2l2l
′
µ

and we get, from the fast decay property (2.1) wil L = 4,

|f [0]
h,j(s)| ≤ C2lµ2−hj

2j−1∑
k=0

1

(3 + |2js− k|)4
.

But as |t− s| ≤ 2−ν+1, we have l ≤ 1
m(j + 1− ν) and thus

2lµ2−hj ≤ 2
1
mµ2( 1

m
−h)(j−ν)2−hν .

It gives, as we took 1
m < h, combined with Lemma 2.1,

|
∑
j>ν

fh,j(s)| ≤ CCµ|t− s|h. (3.11)

Finally, combining (3.10) with (3.11) allows to obtain

|fh(t)− fh(s)| ≤ CCµ|t− s|h

as desired. �

3We can make this constant only dependant of t. Note that, as t is random, Ct is a random variable as well.
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4. Asymptotic behaviour of wavelet coefficients

In this section we study the asymptotic behaviour of the wavelet coefficients of the Gaussian
wavelet series. It will allow to get irregularity properties for the random wavelets series fh, i.e. to
prove that the three corrections obtained in the previous section characterize exactly three possible
pointwise behaviours. Let us start by recalling the following result from Ayache (2019, Lemma
A.27).

Lemma 4.1. (Ayache, 2019) Almost surely, for every t ∈ R, one has

lim sup
j→+∞

|ξj,kj(t)| ≥ 2−3/2√π.

Before stating the next lemma, let us recall that if ξ ∼ N (0, 1), then one has

lim
x→+∞

P
(
|ξ| > x

)
(2π−1)1/2x−1e−x2/2

= 1 . (4.1)

The following result follows the lines of Ayache et al. (2019).

Lemma 4.2. Almost surely, for almost every t ∈ R, one has

lim sup
j→+∞

|ξj,kj(t)|√
log j

> 0 . (4.2)

Proof : By Fubini’s theorem, it is enough to prove that for every t ∈ R, (4.2) holds almost surely.
Let us fix t ∈ R. For every m ∈ N, we consider the event

Am(t) =
{

max
2m≤j<2m+1

|ξ2j ,kj(t)| ≥
√
m log 2

}
.

Using the independence of the random variables ξj,k, (j, k) ∈ N× Z, we have

P
(
Am(t)

)
= 1−

∏
2m≤j<2m+1

P
(
|ξ2j ,kj(t)| <

√
m log 2

)
= 1−

(
1− P

(
|ξ| >

√
m log 2

))2m

where ξ ∼ N (0, 1). Using (4.1) and the fact that log(1 − x) ≤ −x if x ∈ (0, 1), we obtain for m
large enough

P
(
Am(t)

)
≥ 1−

(
1− C 2−

m
2

√
m log 2

)2m

≥ 1− exp
(
− C 2

m
2

√
m log 2

)
where C = 1

2

√
2
π . Hence, it follows that

+∞∑
m=0

P
(
Am(t)

)
= +∞

and since the events Am(t), m ∈ N, are independents, the Borel-Cantelli lemma implies that

P
( ⋂
M∈N

⋃
m≥M

Am(t)
)

= 1 .

It gives that almost surely, for infinitely many m ∈ N, there is j ∈ {2m, . . . , 2m+1 − 1} such that

|ξ2j ,kj(t)| ≥
√
m log 2 ≥

√
log j − log 2.

The conclusions follows. �
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The last lemma we need is proved in Ayache et al. (2019). Note that in this paper, the authors
work in a more general context. Indeed, it is only required that the sequence of standard Gaussian
random variables satisfy the following condition: there isN ∈ N such that for every (j1, k1), (j2, k2) ∈
N× Z satisfying (k1 −N

2j1
,
k1 +N

2j1

)
∩
(k2 −N

2j2
,
k2 +N

2j2

)
= ∅ ,

the random variables ξj1,k1 and ξj2,k2 are independent.

Lemma 4.3. (Ayache et al., 2019) Almost surely, for every non-empty open interval I of R, there
is t ∈ I such that

lim sup
j→+∞

{
|ξj,kj(t)|√

j

}
> 0 .

5. Proof of the main result

Putting together Propositions 3.2, 3.5, 3.8 and Lemmata 4.1, 4.2 and 4.3, we can summarize the
results obtained in the previous sections as follows.

Corollary 5.1. Almost surely,

• there exists t ∈ (0, 1) such that

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
r (|t− s|)

< +∞ and lim sup
j→+∞

|cj,b2jtc|

ω
(h)
r (2−j)

> 0,

• for almost every t ∈ (0, 1),

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
o (|t− s|)

< +∞ and lim sup
j→+∞

|cj,b2jtc|

ω
(h)
o (2−j)

> 0,

• there exists t ∈ (0, 1) such that

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
s (|t− s|)

< +∞ and lim sup
j→+∞

|cj,b2jtc|

ω
(h)
s (2−j)

> 0.

We are now ready to prove our main result.

Proof of Theorem 2.4: Using Corollary 5.1, it suffices to prove the second part of the result. Let us
consider t ∈ (0, 1) for which there is v ∈ {r, o, s} such that

lim sup
s→t

|fh(s)− fh(t)|
ω

(h)
v (|t− s|)

< +∞ and lim sup
j→+∞

|cj,b2jtc|

ω
(h)
v (2−j)

> 0. (5.1)

Let us fix a modulus of continuity ω such that ω = o(ω
(h)
v ). Assume by contradiction that

lim sup
s→t

|fh(s)− fh(t)|
ω(|s− t|)

< +∞. (5.2)
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Given an arbitrary fixed j ∈ N, we set k = b2jtc. The first vanishing moment of the wavelet allows
to write

|cj,k| =
∣∣∣2j ∫

R
ψ(2jx− k)

(
fh(x)− fh(t)

)
dx
∣∣∣

≤ 2j
∫
B(t,2−j)

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx
+ 2j

j−1∑
l=0

∫
Bl

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx
+ 2j

∫
R\B(t,1)

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx (5.3)

where for every l ∈ {0, . . . , j − 1}, Bl denotes the set

(t− 2−l, t+ 2−l) \ (t− 2−l−1, t+ 2−l−1).

The first term can be controlled by using the modulus of continuity ω in the following way

2j
∫
B(t,2−j)

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx ≤ sup
x∈B(t,2−j)

∣∣f(x)− f(t)
∣∣‖ψ‖L1

≤ Cω(2−j) (5.4)

for some positive constant C by assumption (5.2). In order to deal with the second term, we use
in addition the fast decay property of the wavelet (2.1) to get the existence of a natural number N
and a constant C such that

2j
j−1∑
l=0

∫
Bl

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx ≤ C j−1∑
l=0

ω(2−l)

∫
Bl

2j

(3 + |2jx− k|)2N
dx.

Notice then that if x ∈ Bl, then
3 + |2jx− k| ≥ 3 + 2j |x− t| − |2jt− k| ≥ 2j−l−1.

It implies that

2j
j−1∑
l=0

∫
Bl

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx ≤ C j−1∑
l=0

ω(2−l)2−N(j−l−1)

∫
Bl

2j

(3 + |2jx− k|)N
dx

≤ C
j−1∑
l=0

ω(2−l)2−N(j−l−1)

∫
R

1

(3 + |y|)N
dy

= C ′2−Nj
j−1∑
l=0

ω(2−l)2Nl

≤ C ′′ω(2−j) (5.5)

for some constants C ′, C ′′ and using (2.4). It remains to bound the last term. Again, the fast decay
of the wavelet together with the boundedness of the random wavelets series fh lead to

2j
∫
R\B(t,1)

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx ≤ 2‖fh‖∞
∫
R\B(t,1)

2j

(3 + |2jx− k|)2N
dx

≤ 2‖fh‖∞2−Nj
∫
R

2j

(3 + |y|)N
dy

≤ C2−Nj (5.6)
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for some positive constant C, since |2jx− k| ≥ 2j if |t− x| ≥ 1. Putting (5.3), (5.4), (5.5) and (5.6)
together, we finally obtain

|cj,k| ≤ C
(
ω(2−j) + 2−Nj)

for some positive constant C, so that

lim sup
j→+∞

|cj,k|
ω(2−j)

< +∞

if N is chosen large enough. This contradicts the second part of (5.1) since ω = o(ω
(h)
v ). �

Remark 5.2. As mentioned earlier, let us notice that if the wavelet ψ is compactly supported, and if
t is a rapid, ordinary or slow point, then ωv gives the exact pointwise behaviour of f at t, meaning
that

0 < lim sup
s→t

|f(s)− f(t)|
ω

(h)
v (|t− s|)

< +∞

where v = r, v = o or v = s respectively. Indeed, in this case, one has directly

|cj,k| ≤ 2j
∫
B(t,R2−j)

|ψ(2jx− k)|
∣∣fh(x)− fh(t)

∣∣dx
≤ C sup

x:|x−t|<R2−j
|fh(x)− fh(t)|

where R can be computed via the support of the wavelet and C is a positive constant.

The last remark applies in particular to the fractional Brownian motion thanks to the represen-
tation (1.3). Indeed, as R is a smooth process, it does not modify the pointwise regularity and
irregularity properties.

Corollary 5.3. Almost surely, the fractional Brownian motion satisfies the following property for
every non-empty interval I of R:

• almost every t ∈ I is ordinary:

0 < lim sup
s→t

|fh(s)− fh(t)|
|t− s|h

√
log log |t− s|−1

< +∞,

• there exists t ∈ I which is fast:

0 < lim sup
s→t

|fh(s)− fh(t)|
|t− s|h

√
log |t− s|−1

< +∞,

• there exists t ∈ I which is slow:

0 < lim sup
s→t

|fh(s)− fh(t)|
|t− s|h

< +∞.

6. Genericity of the non-existence of slow points

The aim of this section is to prove that the results obtained in the previous section are specific
to these Gaussian random wavelet series. On this purpose, let us define the Fréchet space

C↗h :=
⋂
α<h

Cα([0, 1]),

where for every α ∈ (0, h), Cα([0, 1]) denote the Hölder space of order α. This space and its topology
can be equivalently defined using sequence of wavelet coefficients as follows: If we consider α > 0,
α /∈ N, then for any f ∈ Cα([0, 1]), one has

sup
j∈N

sup
k∈{0,...,2j−1}

2αj |cj,k| < +∞ (6.1)
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where (cj,k)j∈N,k∈{0,...,2j−1} denotes the sequence of wavelet coefficients of f on [0, 1]. It allows
to identify (algebraically and topologically) the Hölder space Cα([0, 1]) with the space of complex
sequences (cj,k)j∈N,k∈{0,...,2j−1} satisfying (6.1), see Meyer (1992). When α ∈ N, we will also denote
by Cα([0, 1]) the space of functions satisfying the condition (6.1).

We will prove that in C↗h, “most of” the functions do not present a slow pointwise behaviour
as the one exhibited for Gaussian wavelet series, i.e. does not belong to the space Ch(t) formed by
the functions f such that

lim sup
s→t

|f(s)− f(t)|
|s− t|h

< +∞.

We will use in this purpose two notions of genericity: the prevalence and the Baire category points
of view.

The notion of prevalence supplies an extension of the notion of “almost everywhere” (for the
Lebesgue measure) in infinite dimensional spaces. In a metric infinite dimensional vector space, no
measure is both σ-finite and translation invariant. However, one can consider a natural extension
of the notion of “almost everywhere” which is translation invariant, see Christensen (1974); Hunt
et al. (1992).

Definition 6.1. Let E be a complete metric vector space. A Borel set A ⊂ E is Haar-null if there
exists a compactly supported probability measure µ such that

∀x ∈ E, µ(x+A) = 0. (6.2)

If this property holds, the measure µ is said to be transverse to A. A subset of E is called Haar-null
if it is contained in a Haar-null Borel set. The complement of a Haar-null set is called a prevalent
set.

In order to prove that a set is Haar-null in a functional space E, one can often use for transverse
measure the law of a stochastic process, see Clausel and Nicolay (2010); Esser and Jaffard (2018)
for some applications of this method. If P is a property that can be satisfied by points of E, one
can prove that P holds only on a Haar-null set by exhibiting a stochastic process X whose sample
paths lies in a compact subset of E and such that for all f ∈ E almost surely the property P does
not hold for X + f .

In our setting, the stochastic process that will be used is a random wavelet series. The following
result allows to get that the sample paths of this series are almost surely in a compact set of C↗h.
Let us first describe this subset.

Lemma 6.2. Let h > 0 and let (αj)j∈N be a non-decreasing sequence of (0, h) with tends to h. The
subset

K =
{
f ∈ C↗h : max

k∈{0,...,2j−1}
|cj,k| ≤ 2−αjj ∀j ∈ N

}
is compact in C↗h, where (cj,k)j∈N,k∈{0,...,2j−1} denotes the sequence of wavelet coefficients of f .

Proof : Clearly, K is closed in C↗h. Since this last space is a Fréchet space, it suffices now to
prove that K is totally bounded. Let us fix ε > 0 and α < h. Then there exists J ∈ N such that
2−αjj < ε2−αj for every j ≥ J , which implies that

sup
j≥J,k∈{0,...,2j−1}

2αj |cj,k| < ε

for the sequence of wavelet coefficients (cj,k)j∈N,k∈{0,...,2j−1} of any f ∈ K. Moreover, since the
product

P =
J−1∏
j=0

2j−1∏
k=0

[−2−αj,kj , 2αj,kj ]
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where we have set αj,k = αj for every k ∈ {0, . . . , 2j − 1}, is compact, one can find a finite number
of sequences c1, . . . , cL with support included in {(j, k) : j ≤ J − 1, k ∈ {0, . . . , 2j − 1}} such that

P ⊆
L⋃
l=1

J−1∏
j=0

2j−1∏
k=0

(
clj,k − δ, clj,k + δ

)
,

where δ < 2−αJε. For every l, we define f l =
∑J−1

j=0

∑2j−1
k=0 clj,kψ(2j · −k). In order to conclude, let

us show that

K ⊆
L⋃
l=1

{
f ∈ C↗h : ‖f − f l‖α < ε

}
.

If f ∈ K, its truncated sequence (cj,k)j≤J−1,k∈{0,...,2j−1} of wavelet coefficients belongs to P . Hence,
for a l ∈ {1, . . . , L}, one has

2αj |cj,k − clj,k| ≤ δ2αj < ε

if j ≤ J − 1, and
2αj |cj,k − clj,k| = 2αj |cj,k| < ε

if j ≥ J . �

Before stating our result, we need to recall the following wavelet “almost characterization” of the
pointwise Hölder regularity. It relies on alternative quantities, namely the wavelet leaders. In order
to define them, we need to introduce the notation cλ to denote the wavelet coefficient cj,k, where λ
is the dyadic interval

λ = λ(j, k) =
[ k

2j
,
k + 1

2j

)
Then, if 3λ denote the interval with the same center as λ but three times larger, the wavelet leader
dλ is defined by

dλ = sup
λ′⊂3λ

|cλ′ |. (6.3)

Note that this supremum is finite as soon as f is locally bounded. In Jaffard (2004b), the author
proved that if f ∈ Ch(t) for some h > 0, then there exists a constant C > 0 such that

dλ(j,kj(t)) ≤ C2−αj . (6.4)

This inequality will allow us to construct wavelet series which do not belong to Ch(t) for every
t ∈ [0, 1].

Proposition 6.3. Let h > 0. The set of functions f such that f /∈ Ch(t) for every t ∈ [0, 1] is
prevalent in C↗h.

Proof : Let us consider a sequence (jn)n∈N satisfying jn+1 > jn + blog2 j
2
nc + 1 and let us set

αn = h− 1√
jn

for every n ∈ N. Let us define the random wavelets series

f =
∑
n∈N

jn+1−1∑
j=jn

2j−1∑
k=0

2−αnjεj,kψj,k

where (εj,k)j∈N,k∈{0,...,2j−1} is a sequence of independent U([−1, 1]) random variables. Clearly, for
every α < h, one has

2−αnj ≤ 2−αj

if j ∈ {jn, . . . , jn+1 − 1} for n large enough. Using the characterization given in (6.1), it follows
that f ∈ Cα([0, 1]). Moreover, from Lemma 6.2, we know that the process f takes its values in a
compact subset of C↗h.
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Let us now show that almost surely f /∈ Ch(t) for every t ∈ [0, 1]. Let us fix M ∈ N. For every
n ∈ N, if one consider the subintervals of scale j′ = jn + blog2 j

2
nc + 1 in the supremum appearing

in the definition (6.3) of the wavelet leaders, one has

P
(

inf
k∈{0,...,2jn−1}

djn,k ≤M2−hjn
)
≤

2jn−1∑
k=0

P
(

sup
λ′⊆λjn,k

|2−αnj′ελ′ | ≤M2−hjn
)

≤ 2jn
(

2αnj
′
M2−hjn

)2j
′−jn

≤ 2jn+j2nhj2hj2n
n 2−j

5/2
n M j2n .

The Borel-Cantelli Lemma implies that almost surely, one has

djn,k > M2−hjn

for every n large enough and every k ∈ {0, . . . , 2jn − 1}. Since M ∈ N is arbitrary, (6.4) gives the
announced result. In order to conclude, it suffices to prove that the previous result is still valid if
we replace the wavelet series f by

f̃ = f + g

for a function g ∈ C↗h. In this case, the wavelet coefficients 2−αnj of f are replaced by

2−αnjεj,k + cj,k = 2−αnj(εj,k + 2αnjcj,k).

It implies that the random variables defining the wavelets series are still independent but no more
centred since they are shifted by a deterministic quantity. Clearly, the probabilities computed before
can only become smaller, hence the Borel-Cantelli lemma still holds. �

To end the paper, we show that the same result holds true if one replaces the notion of prevalence
by the genericity in the sense supplied by the Baire category theorem. Let us recall that a subset A
of a Baire space X is of first category (or meagre) if it is included in a countable union of closed sets
of X with empty interior. The complement of a set of first category is Baire-residual; it contains a
countable union of dense open sets of X.

Proposition 6.4. Let h > 0. The set of functions f such that f /∈ Ch(t) for every t ∈ [0, 1] is
Baire-residual in C↗h.

Proof : Let us consider the non-decreasing sequence (αj)j∈N of (0, h) with converges to h defined by
αj = h − 1√

j
. For every J ∈ N, the set CJ is formed by the functions f ∈ C↗h whose sequence of

wavelet coefficients (cj,k)j∈N,k∈{0,...,2j−1} satisfies

2αjj |cj,k| ∈ N \ {0} ∀j ≥ J ,∀k ∈ {0, . . . , 2j − 1}.
Finally, we define the open sets UJ by

UJ =
⋃
j≥J

{
g ∈ C↗h : ∃f ∈ Cj such that ‖f − g‖αj <

1

2

}
.

Notice that if g ∈ UJ with wavelet coefficients (ej,k)j∈N,k∈{0,...,2j−1}, then there is f ∈ Cj0 for a
j0 ≥ J , with wavelet coefficients (cj,k)j∈N,k∈{0,...,2j−1} such that

|ej0,k| ≥ |cj0,k| − |ej0,k − cj0,k| ≥ 2−αj0j0 − 1

2
2−αj0j0 =

1

2
2−αj0j0

for every k ∈ {0, . . . , 2j0 − 1}. Now, assume that g belongs to the set R defined by

R =
⋂
J∈N

UJ .
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If there exists t ∈ [0, 1] such that g ∈ Ch(t), (6.4) gives the existence of a constant C > 0 such that

dj,kj(t) ≤ C2−hj .

Since g ∈ R, one gets
1

2
2−αjj =

1

2
2−hj+

√
j ≤ C2−hj

for infinitely many j, which is impossible. Consequently, g /∈ Ch(t) for every t ∈ [0, 1].
To conclude, it suffices to prove that the open sets UJ are dense in C↗h. Let us fix J ∈ N,

g ∈ C↗h, α < h and ε > 0. Let J0 ≥ J be large enough to ensure that both α < αJ0 and
2(α−αJ0 )J0 < ε are satisfied. We construct the function f via its sequence of wavelet coefficients by
setting

cj,k =


ej,k if j < J0

2−αjj [2αjjej,k] if j ≥ J0 and 2αjj |ej,k| ≥ 2,

2−αjj if j ≥ J0 and 2αjj |ej,k| < 2,

so that f ∈ CJ0 ⊆ UJ and |2αjjcj,k − 2αjjej,k| ≤ 1 for every j ≥ J0. Hence one has

2αj |ej,k − cj,k| ≤ 2(α−αj)j ≤ 2(α−αJ0 )J0 < ε

for every j ≥ J0, which allows to conclude. �
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