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Abstract. We consider self-avoiding walk on finite graphs with large girth. We
study a few aspects of the model originally considered by Lawler, Schramm and
Werner on finite balls in Zd. The expected length of a random self avoiding path
is considered. We discuss possible definitions of “critical” behavior in the finite
volume setting. We also define a “critical exponent” γ for sequences of graphs of
size tending to infinity, and show that γ = 1 in the large girth case.

1. Introduction

1.1. Self-avoiding walks. A self-avoiding walk is a path in a graph that does not
visit any vertex more than once. Counting the number of self-avoiding walks of
length n started at the origin in Zd, is a long standing open problem. It is very
difficult to come up with formulas that capture the correct asymptotics. In fact,
even the exponential growth rate of the number of such walks is difficult to precisely
calculate in most cases; this number µ is known as the connective constant of the
lattice. For more on self-avoiding walks in the Euclidean context see Bauerschmidt
et al. (2012); Madras and Slade (2013).

Let us briefly introduce the main model usually considered in the plane (and in
fact in Zd in general). This is sometimes called Lawler-Schramm-Werner model of
self-avoiding walk, see Lawler et al. (2004). For some parameter 0 < x ∈ R and
scaling factor δ > 0 consider the finite graph Gδ := δZd ∩B(0, 1), where B(0, 1) is
the Euclidean ball of radius 1. Let SAWδ be the set of all self-avoiding walks in Gδ
started at 0 with an endpoint in the boundary of Gδ (there are finitely many such

walks). We may define a probability measure Pδx on SAWδ by letting the probability
of ω ∈ SAWδ be proportional to x|ω| where |ω| is the length of ω.
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It is known that the model undergoes a phase transition at xc = µ−1. Ioffe
(1998) has shown that for x < xc the measures Pδx converge (in an appropriate
sense) to a measure on geodesics from 0 to the boundary of B(0, 1). For x > xc
one may show that the limiting curve fills the ball B(0, 1) (again, in an appropriate
sense), see Duminil-Copin et al. (2014).

The major question is to understand what happens at the critical point x = xc.
In dimensions d ≥ 4 the limiting curve is expected to be scaling to a Brownian
motion; this is related to works of Brydges and Spencer (1985) and Hara (2008);
Hara and Slade (1991, 1992b,a) (see also Brydges et al. (2012, 1992); Brydges and
Imbrie (2003a,b); Brydges et al. (2009); Brydges and Slade (2010) for the upper
critical dimension d = 4, and the book Madras and Slade (2013) and references
therein). This is known for d ≥ 5 using lace expansion, see Hara and Slade (1992b).
Dimension d = 3 is the most mysterious. In dimension d = 2 the limiting curve
is conjectured to be SLE8/3, Schramm-Loewner Evolution of parameter 8

3 Lawler
et al. (2004). Not much has been rigorously proven regarding the critical two-
dimensional case; even very intuitive facts are quite involved, see e.g. Duminil-Copin
and Hammond (2013).

1.2. Finite graphs. Self-avoiding walks on general graphs have received much less
attention than the Euclidean lattices. (See, for example, Alm and Janson (1990);
Grimmett and Li (2013); Madras and Wu (2005) and references therein.) In this
note we adapt the Lawler-Schramm-Werner model to the setting of finite graphs.
The problem on finite graphs is that there is no canonical way to define “criticality”
and it is not clear what “mean field behavior” is. This is the purpose of our
definition of the critical exponent γ and critical sequences below, and their relations
to the expected length of a self-avoiding path and the asymptotic behavior of the
partition function. This is explained in analogy to the more classical Euclidean
space setting.

There are two main results of this paper. The first, is the definition of the notion
of critical sequences and critical exponent for the finite graph setting, with the dif-
ferent viewpoints relating them to expected length and intersection of independent
self-avoiding paths. This is presented in Section 1.5 and Theorem 1.4.

The second main result is the analysis of the critical behavior of self-avoiding
walks in the large-girth case. We have two different types of possible “mean field”
behaviors (in analogy to the complete graph case and the Euclidean case), and we
show that large girth graphs only exhibit one of these (namely critical exponent
γ = 1). This is done in Theorems 1.7 and 1.8.

Let us precisely define the model and state the results.

1.3. The model. A path ω in a graph G is a sequence (ω0, ω1, . . . , ωn) of vertices
such that ωj ∼ ωj+1 for all j < n, where x ∼ y means x, y are adjacent in the graph
G. For such a path ω = (ω0, ω1, . . . , ωn) we use |ω| = n to denote the length of the
path, which is the number of edges traversed.

For a graph G we denote by SAW(G) the set of finite length self avoiding walks
in G; that is,

SAW(G) = {ω : ω is a finite path and ∀ k 6= j , ωk 6= ωj} .
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We use SAW(o,G) where o is a vertex in G to denote the set of all self avoiding
walks in G starting at o. SAWk(G) (resp. SAWk(o,G)) denotes the set of those self
avoiding walks in SAW(G) (resp. SAW(o,G)) which have length k.

Definition 1.1. Let G be a graph (finite or infinite). Let o ∈ G be some vertex.
For a real parameter x > 0 define the partition function

Zo,G(x) :=
∑

ω∈SAW(o,G)

x|ω| =

∞∑
n=0

|SAWn(o,G)| · xn.

(When G is infinite this converges for x < µ−1 where µ = µ(G) is the connective
constant of G.) For any x for which the partition function converges, define a
probability measure on SAW(o,G) by

Px,o,G[ω] = (Zo,G)−1 · x|ω|.

When G is a transitive graph we will usually omit the root vertex o, since any
vertex plays the same role; e.g. on a transitive graph G by Px,G we mean Px,o,G for
some o.

Expectation under Px,o,G is denoted Ex,o,G (or Ex,G when G is transitive).
We will be interested in two main quantities:

• The expected length of a random element under Px,o,G; that is

L(x, o,G) = Ex,o,G[|ω|] = (Zo,G(x))−1 ·
∞∑
n=0

|SAWn(o,G)| · n · xn.

• The probability that two independent samples from Px,o,G intersect triv-
ially; that is,

I(x, o,G) = (Px,o,G×Px,o,G)[ω ∩ ω′ = {o}].

(Here ω, ω′ are independent samples each with law Px,o,G.)

Of course the analysis of the partition function Zo,G(x) plays an important part.
As usual, the vertex o is omitted in the notation for transitive graphs.

1.4. Critical exponents. We start by a brief review of critical exponents in the
classical case, as motivation for our definition of the critical exponent γ below.

Let G be some transitive infinite graph, and fix some origin o ∈ G. The classical
literature on self-avoiding walks is interested in determining the existence and values
of the so-called critical exponents. We will not go into all the details here, see
Bauerschmidt et al. (2012) and Madras and Slade (2013) for more. One of these
critical exponents is γ. It is defined as the number such that for some constant A,

|SAWn(o,G)| ∼ A · µn · nγ−1 as n→∞.

(Here f(x) ∼ g(x) as x→ a means that limx→a f(x)/g(x) = 1 and the limit exists.)
For example, lace expansion methods show that when G = Zd for d ≥ 5 we have

that the exponent γ exists and γ = 1, see Hara and Slade (1991, 1992b,a). This is
what is called mean field behavior, because the analogous quantity for the simple
random walk is also 1 in dimensions d ≥ 5.
γ also has a probabilistic interpretation. If it exists, then the probability that

two independent uniformly chosen self-avoiding walks from SAWn(o,G) intersect
only at the origin is ∼ cn1−γ as n→∞.
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It is possible to show that the exponent γ exists if and only if for some constants
c, c′,

ZG(x) ∼ c(1− µ · x)−γ and L(x,G) ∼ c′(1− µ · x)−1 as x↗ µ−1,

(see e.g. Bauerschmidt et al., 2012).

If γ exists then γ = limx↗µ−1
logZo,G(x)
logL(x,o,G) . Thus, with this intuition in mind we

define

γ(x, o,G) :=
logZo,G(x)

log(L(x, o,G) + 1)
. (1.1)

In Proposition 1.9 we show that for transitive G,

L(x,G) + 1 = I(x,G) · ZG(x).

Plugging in the above predictions we have that if the exponent γ exists then

I(x,G) ∼ c(1− xµ)γ−1.

Thus, mean field γ = 1, implies that I(x,G) is bounded away from 0 as x↗ µ−1.
Non mean field exponent, γ > 1, implies that this probability converges to 0 as
x↗ µ−1.

These properties motivate our definition of the critical exponent in the finite
case.

1.5. Criticality in the finite setting. Now let us return to the finite setting. Let
(Gn)n be a sequence of finite graphs with |Gn| → ∞, and on ∈ Gn some root
vertex.

Definition 1.2. For a sequence (xn)n of positive real numbers:

• We say that sequence (xn)n is super-critical (for SAW on (on, Gn)n) if

lim inf
n→∞

Zon,Gn(xn) =∞.

• We say that the sequence (xn)n is sub-critical if

lim sup
n→∞

Zon,Gn(xn) <∞.

• We say that the sequence (xn)n is critical if for any 0 < ε < 1 the sequence
(xn(1 + ε))n is super-critical and the sequence (xn(1− ε))n is sub-critical.

Critical sequences are unique in the following sense.

Proposition 1.3. Let (xn)n be a critical sequences for (on, Gn). Then (yn)n is a
critical sequence if and only if xn

yn
→ 1 as n→∞.

Another result is a characterization of critical sequences in terms of the inter-
section probability function I.

Theorem 1.4. For SAW on a sequence of transitive graphs Gn with |Gn| ↗ ∞,
and a sequence (xn)n:

• (xn)n is super-critical if and only if lim supn I(xn, Gn) = 0.
• (xn)n is sub-critical if and only if lim infn I(xn, Gn) > 0.

This theorem is not surprising, since we expect that super-critical paths should
be “long”, so that a trivial intersection has small probability, and sub-critical paths
are expected to be short, so there is a reasonable probability of a trivial intersection.
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1.6. Mean field. The main purpose of this paper is to analyze the finite graph
model. We begin with the simplest model, the complete graph.

Theorem 1.5. Consider the SAW model on the sequence (Gn)n where Gn is the
complete graph on n vertices. Then, ( 1

n )n is a critical sequence.
Moreover, for all ε > 0:

• If (xn)n is a sequence such that limn→∞(nxn) = 1 + ε, then

lim
n→∞

L(xn, Gn)

n
=

ε

1 + ε
and lim

n→∞
I(xn, Gn) = 0.

• If (xn)n is a sequence such that limn→∞(nxn) = 1− ε then,

lim
n→∞

L(xn, Gn) =
1− ε
ε

and lim
n→∞

I(xn, Gn) = 1.

• If xn = 1
n then there exists some (explicit) universal constant α > 0 such

that

lim
n→∞

L(xn, Gn)√
n

= α.

Theorem 1.6. Consider the SAW model on the sequence (Gn)n where Gn is the
complete graph on n vertices. For critical and sub-critical sequences (xn)n such
that lim supn→∞(nxn) ≤ 1, the exponent γ has the mean field value

lim
n→∞

γ(xn, Gn) = 1.

For a super-critical sequence (nxn)→ 1 + ε, we have

lim
n→∞

γ(xn, Gn) =∞.

1.7. Euclidean case. It is interesting to compare our findings on the complete graph
to the more classical Euclidean case.

When Gn is the n × n torus (Z/nZ)2, the above remarks on the planar self-
avoiding walk lead us to the conclusion that

L(x,Gn) =


O(1) x < µ(Z2)−1

Ω(n2) x > µ(Z2)−1

n4/3 x = µ(Z2)−1,

where the last value in the critical case is only conjectured, and has to do with the
fact the the Hausdorff dimension of SLEκ is 1 + κ

8 for κ ≤ 8. (Note that now walks
are not constrained to reach the boundary of the ball of radius n, as would be the
case in the original Lawler-Schramm-Werner model.)

For higher dimensions (that is, (Z/nZ)d) the sub-critical and super-critical be-
havior should be the same as the planar case; i.e. constant for sub-critical and
order of the volume in the super-critical case. The results of Brydges and Spencer
(1985) and Hara and Slade (1991, 1992b,a) tell us that the the number of self-
avoiding walks in Zd, d ≥ 5, started at 0, of length n, is asymptotic to Aµn, for
some constant A > 0, and that a typical self-avoiding walk of length n behaves like
a random walk. This leads us to expect that on the finite torus (Z/nZ)d, d ≥ 5 the
self-avoiding walk should not “feel” its own presence until reaching length nd/2 (this
is just the birthday paradox). Thus, we expect that for d ≥ 5 taking Gn = (Z/nZ)d,
we have that

L(xc, Gn) = Θ(nd/2) =
√
|Gn|.
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Here xc is the critical parameter xc = µ(Zd)−1.
The complete graph together with the Euclidean case give two possible notions

of “mean field behavior”: critical exponent γ = 1 or expected length L of order
square-root of the volume. We turn to the large girth case to understand which of
these is the correct picture when there is more exotic geometry involved.

1.8. SAW on large girth. Expander graphs are graphs with very good expansion
properties. It is known that a random d-regular graph is a very good expander with
high probability, and has large girth around typical vertices with high probability.
In many models random d-regular graphs exhibit the same behavior as the mean-
field complete graph case. Sometimes such mean-field behavior can also be shown
for expanders of large girth in general. See the discussion immediately following
Theorem 1.7.

This experience may lead one to conjecture that the same phenomena will occur
for the SAW model. The sub-critical and super-critical cases indeed do have con-
stant and linear order expected length respectively. However, the analogy breaks
down for the expected length L in the critical case, and the scaling is not

√
|Gn|.

That being said, a different measure of “mean field” is the critical exponent γ. In
this case we will show that γ = 1 for graphs of large girth.

Instrumental in the proofs are non-backtracking random walks. A non-back-
tracking walk is a path in a graph that never backtracks the last edge it passed
through. A non-backtracking random walk is one that chooses each step randomly
out of the currently allowed steps. This is a Markov chain on the set of directed
edges of the graph. For a non-backtracking random walk on a graph G one may
define the mixing time by

τ = min

{
t : max

u,v
|Pu[NB(t) = v]− 1

|G| | ≤
1

2|G|

}
,

where NB is the non-backtracking random walk, and Pv is the associated probability
measure conditioned on NB(0) = v. In Alon et al. (2007) the mixing time of non-
backtracking random walks is studied, and it is shown that it is always better than
the mixing time of the usual simple random walk. We use the mixing time of the
non-backtracking random walk to quantitatively define the notion of “large girth”.

Theorem 1.7. Let (Gn)n be a sequence of d-regular transitive graphs with sizes
|Gn| ↗ ∞. Let gn be the girth of Gn and assume that gn →∞ as n→∞. Consider
the SAW model on the sequence (Gn)n.

Then, 1
d−1 is a critical (constant) sequence, and we have:

• If xn → x for x < (d− 1)−1 then

lim
n→∞

L(xn, Gn) =
(d− 1)x

1− (d− 1)x
and lim

n→∞
I(xn, Gn) = 1− 1

d .

• If x = (d− 1)−1 then,

C−1gn ≤ L(x,Gn) ≤ C · gn(d− 1)2gn

where C > 0 is a constant that depends only on the degree d.
• Assume that Gn has large girth in the sense that if τn is the mixing time

of the non-backtracking random walk on Gn, then τn = o((d − 1)gn/4) as
n→∞.
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If xn → x > (d− 1)−1 then there exists c = c(x, d) > 0 such that

lim inf
n→∞

L(xn, Gn)

|Gn|
≥ c and lim

n→∞
I(xn, Gn) = 0.

Note that one may find expander graphs (Gn)n with girth as large as gn =
ε log |Gn| for any ε > 0. By results of Alon et al. (2007), the mixing time of the
non-backtracking random walk is faster than the mixing time of the simple random
walk on Gn. Choosing (Gn)n as these large-girth expander graphs, the mixing time
in this case is τn = O(log |Gn|). So in Theorem 1.7 the critical expected length
could be bounded by order |Gn|δ for any choice of δ > 0 (and in fact may even be
poly-logarithmic). For example, it is well known that the above conditions hold for
the constructions by Margulis Margulis (1982) and the Lubotzky-Phillips-Sarnak
expanders Lubotzky et al. (1988).

Occasionally one expects expanders, especially large girth expanders, to exhibit
tree-like or mean-field behavior. To illustrate this, let us contrast our results with
some other mean-field behavior in the large girth setting. In Nachmias (2009) finite
graphs with large girth are shown to exhibit mean-field behavior of the critical
window for bond percolation. Coincidently, the non-backtracking random walk
appears as part of the conditions in that paper as well. A more recent paper
Nachmias and Peres (2012) deals with the infinitely many infinite components phase
in percolation on infinite graphs with large girth, as well as the critical exponents
for percolation and self-avoiding walks on such graphs. There it is shown that the
exponents are mean-field exponents for large girth infinite graphs. Again, there is
a connection to the non-backtracking random walk, which appears in the proofs.

1.9. Critical exponent in large girth. As mentioned above, although the expected
length L does not exhibit “mean field behavior” for large girth expanders, we may
consider another measure of “mean field behavior”, namely the “critical exponent”
γ. We show that γ = 1 in the critical regime for graphs with large girth. We also
determine γ for the sub- and super-critical regimes.

Theorem 1.8. For a sequence of d-regular transitive graphs (Gn)n, of size |Gn| ↗
∞ and girth gn →∞ as n→∞:

• For the critical sequence xn = 1
d−1 , the critical exponent γ has the mean

field value
lim
n→∞

γ(xn, Gn) = 1.

• If xn → x < 1
d−1 then

lim
n→∞

γ(xn, Gn) =
log d

d−1 − log(1− (d− 1)x)

− log(1− (d− 1)x)
∈ (1,∞).

• If xn → x > 1
d−1 and if the girth of Gn is large enough so that τn = o((d−

1)gn/4) as n → ∞ (where τn is the mining time of the non-backtracking
random walk on Gn, as in the assumptions of Theorem 1.7), then

lim
n→∞

γ(xn, Gn) =∞.

Recall that in the classical setting I(x,G) ∼ c(1−xµ)γ−1 (as in Section 1.4). In
our (large girth) setting the analogous quantity for a sequence xn → x < 1

d−1 is

(1− (d− 1)xn)γ(xn,Gn)−1 = exp
(

log d
d−1 ·

log(1−(d−1)xn)
− log(1−(d−1)x)

)
→ d−1

d > 0.



528 Ariel Yadin

Also, by Theorem 1.7, I(xn, Gn) → d−1
d . This coincides nicely with the fact that

γ = 1 in the critical case.

1.10. Some more general results. Our analysis also provides some general results re-
lating the trivial-intersection probability I(x, o,G) to the expected length L(x, o,G)
and partition function Zo,G(x), for transitive graphs. This relation also holds for
infinite graphs (as long as the partition function converges).

Proposition 1.9. Suppose that G is a transitive graph (finite or infinite). Let
x > 0 be such that ZG(x) converges (all x > 0 in the finite graph case). Then,

L(x,G) + 1 = I(x,G) · ZG(x).

We also prove that the expected length L is an increasing function of the pa-
rameter. This result also holds for infinite graphs as long as the model is defined.

Theorem 1.10. The function x 7→ L(x, o,G) is a non-decreasing function (defined
for all x such that Zo,G(x) <∞).

2. Open questions

Before moving to the proofs, let us mention some basic open questions.

2.1. Critical exponents. There are other critical exponents which appear in the
classical self-avoiding walk literature (e.g. mean-square displacement exponent ν).
It would be of interest to define these values in the finite graph setting, and perhaps
obtain some relations similar to the Fischer relations (see e.g. Bauerschmidt et al.,
2012).

Regarding the exponent γ, note that a-priori its value depends on the choice of
the sequence of parameters xn.

Question 2.1. Show that for two critical sequences xn

yn
→ 1, we have that

γ(xn, on, Gn)

γ(yn, on, Gn)
→ 1.

Another phenomena arising from this work is that we expect γ = ∞ in the
super-critical regime. This regime has no analogue in the infinite-graph case.

Question 2.2. Show that if (xn)n is a super-critical sequence then γ(xn, on, Gn)→
∞.

2.2. I is decreasing. The expected length of a self-avoiding walk L(x, o,G) is an
increasing function of x. Intuitively, raising x increases the length of a typical
path. We would expect that this phenomena should imply that two independent
self-avoiding walks should have smaller chances of a trivial intersection as x grows.

Question 2.3. Show that the function x 7→ I(x, o,G) is a non-increasing function
of x.
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2.3. Extending to other models. In this paper we have dealt with transitive large
girth graphs. Transitivity is required to relate the expected length L to the intersec-
tion probability I, as in Proposition 1.9, which is a starting point for our analysis.
The large girth is required for the connection to the non-backtracking walk, see
Section 3 below.

It is very natural to extend the results in this paper and investigate graphs that
are not necessarily transitive, and graphs that may have small cycles, but only very
few. For example, this is what random d-regular graphs look like. It seems that the
analysis becomes more difficult in these cases, and perhaps new ideas are required.

3. Connection to non-backtracking random walk

The connection between self-avoiding walks and non-backtracking walks has al-
ready appeared in a paper by Kesten (1964). It is used to give bounds on the
connective constant of Zd for large d.

It seems, in fact, that there is a deeper connection between self-avoiding walks
and non-backtracking random walks. The theory is developed in Fitzner (2013),
where Fitzner and van der Hofstad develop lace expansion based on the non-
backtracking random walk rather than the simple random walk. They apply this in
Zd to the analysis of SAW. However, it seems that lace expansion methods, while
achieving amazing results in Zd, are difficult to generalize to other settings (such
as non-commutative groups and even more general graphs).

We now give a simple application of non-backtracking random walks to the study
of self avoiding walks.

A non-backtracking path ω in G is a sequence ω = (ω0, . . . , ωn) such that for
all j < n we have ωj ∼ ωj+1 (so that ω is a path in G), and this path never
backtracks an edge in G: i.e. for all j < n− 1 we have that ωj+2 6= ωj . We use NB
to denote a non-backtracking random walk on a fixed d-regular graph G started
at a fixed vertex o ∈ G. Po,Eo denote the corresponding probability measure and
expectation. Thus, for any non-backtracking path ω in G of length |ω| = k started
at o, the Po-probability that NB[0, k] = ω is 1

d ·(d−1)−(k−1). It is simple to see that
this is obtained by the Markov chain on directed edges, that at each step chooses
uniformly among all edges emanating from the current vertex, except the edge that
was used to reach the current vertex in the previous time step.

The key observation is as follows.

|SAWk(o,G)| · (d(d− 1)k−1)−1 =
∑

ω∈SAWk

1
d(d−1)k−1 = Po[NB[0, k] ∈ SAW(o,G)].

Define

T = inf {k ≥ 0 : NB[0, k] 6∈ SAW(G)} = inf {k > 2 : ∃ j < k , NB(j) = NB(k)} .

We call T the self-intersection time of NB. Thus,

|SAWk(o,G)| = d

d− 1
· (d− 1)k ·Po[T > k] (3.1)
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Now consider the partition function for any 0 < y 6= 1 and x = y
d−1 ,

Zo,G(x) =

∞∑
k=0

|SAWk(o,G)|(d− 1)−kyk

= d
d−1 ·

∞∑
k=0

Po[T > k]yk =
d

d− 1
· 1

y − 1
·Eo[y

T − 1]. (3.2)

Since,

m−1∑
y=0

kyk = y
∂

∂y

m−1∑
k=0

yk = y
∂

∂y

ym − 1

y − 1

= y
mym−1(y − 1)− ym + 1

(y − 1)2
=

y

y − 1
·mym−1 − y

y − 1
· y

m − 1

y − 1
,

we get that

Ex,o,G[|ω|] = (Zo,G(x))−1 · d
d−1 ·Eo[

∞∑
k=0

kyk1{T>k}]

=
Eo[Ty

T ]

Eo[yT − 1]
− y

y − 1
=

y

1− y
− Eo[Ty

T ]

Eo[1− yT ]
. (3.3)

For the case x = 1
d−1 (i.e. y = 1),

Zo,G(x) =

n−1∑
k=0

|SAWk(o,G)|(d− 1)−k

= d
d−1 ·

n−1∑
k=0

Po[T > k] =
d

d− 1
·Eo[T ]. (3.4)

And similarly to the above,

Ex,o,G[|ω|] = (Zo,G(x))−1 · d
d−1 ·Eo[

∞∑
k=0

k1{T>k}] =
Eo[T (T − 1)]

2Eo[T ]
. (3.5)

4. Proofs of General Results

We start with the proof of Proposition 1.3, which is the statement the critical
sequences are unique (in a certain sense).

Proof of Proposition 1.3: To simplify the notation in this proof, we write Z(xn) for
Zon,Gn(xn).

For the first direction, assume that both (xn)n, (yn)n are critical sequences. It
suffices to prove that lim supn→∞

xn

yn
≤ 1, since both sequences play the same role.

If lim supn→∞
xn

yn
> 1, then there exists some 0 < ε < 1

4 and subsequences

(xnk
)k, (ynk

)k such that for all k,

xnk

ynk

≥ 1 + 4ε ≥ 1 + 2ε
1−ε =

1 + ε

1− ε
.
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Thus, by the definition of a critical sequence, using the fact that Zo,G(·) is an
increasing function,

∞ > lim sup
n→∞

Z(xn(1− ε)) ≥ lim sup
k→∞

Z(xnk
(1− ε))

≥ lim sup
k→∞

Z(ynk
(1 + ε)) ≥ lim inf

n→∞
Z(yn(1 + ε)) =∞,

a contradiction!
For the other direction, let (xn)n be a critical sequence and (yn)n a sequence

such that xn

yn
→ 1.

Fix small ε > 0. Then, for all large enough n we have xn(1− 1
2ε) ≤ yn ≤ (1+ε)xn.

Thus,

lim sup
n→∞

Z(yn(1− ε)) ≤ lim sup
n→∞

Z(xn(1− ε2)) <∞,

lim inf
n→∞

Z(yn(1 + ε)) ≥ lim inf
n→∞

Z(xn(1 + 1
2ε(1− ε))) =∞.

So (yn)n is critical as well. �

We move to the proof of Proposition 1.9, which is the identity IZ = L+ 1.

Proof of Proposition 1.9: Let

Sk,j := {(ω, ω′) ∈ SAWk(o,G)× SAWj(o,G) : ω ∩ ω′ = {o}} .

For (ω, ω′) ∈ Sk,j let ω̂ be the path that is ϕ(ω∪ω′) mapped by the automorphism
ϕ of G taking ω(k) to o. Note that ω̂ ∈ SAWk+j(o,G) because ω ∩ ω′ = {o}. This
map may be inverted. If ω̂ ∈ SAWk+j(o,G) one can define a pair

ω = ϕ−1(ω̂(k), ω̂(k − 1), . . . , ω̂(0)) and ω′ = ϕ−1(ω̂[k, k + j]),

where ϕ is the same automorphism as before. Then (ω, ω′) ∈ Sk,j . Thus, we have
shown that when G is transitive, |Sk,j | = |SAWk+j |.

We now compute for x = y
d−1 , y 6= 1,

(Zo,G(x))2 · P[ω ∩ ω′ = {o}] = d
d−1 ·

n−1∑
k,j=0

yk+jPo[T > k + j] = d
d−1 ·Eo

T−1∑
k=0

yk
T−1−k∑
j=0

yj

= d
d−1 ·

1

y − 1
·Eo

T−1∑
k=0

yk(yT−k − 1) = d
d−1 ·

1

(y − 1)2
·Eo[Ty

T (y − 1)− yT + 1].

Thus,

P[ω ∩ ω′ = {o}] =
d− 1

d
· Eo[Ty

T (y − 1)− yT + 1]

(Eo[yT − 1])2
.

So by (3.3),

Ex,o,G[|ω|] + 1 =
Eo[Ty

T ]

Eo[yT − 1]
− 1

y − 1
=

1

y − 1
· Eo[Ty

T (y − 1)− yT + 1]

Eo[yT − 1]

=
1

y − 1
· d

d− 1
· P[ω ∩ ω′ = {o}] ·Eo[y

T − 1]

= P[ω ∩ ω′ = {o}] · Zo,G(x).
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In the case x = 1
d−1 (y = 1),

(Zo,G(x))2 · P[ω ∩ ω′ = {o}] = d
d−1 ·

n−1∑
k,j=0

Po[T > k + j] = d
d−1 ·Eo

T−1∑
k=0

(T − k)

= d
d−1 ·Eo

T∑
k=1

k = d
d−1 ·

1
2Eo[T (T + 1)].

So,

P[ω ∩ ω′ = {o}] =
d− 1

d
· Eo[T (T + 1)]

2(Eo[T ])2
,

and by (3.5),

Ex,o,G[|ω|] + 1 =
Eo[T (T + 1)]

2Eo[T ]
=

d

d− 1
· P[ω ∩ ω′ = ∅] ·Eo[T ]

= P[ω ∩ ω′ = {o}] · Zo,G(x).

�

We now prove Theorem 1.10, showing that L(x) is an increasing function of x,
regardless of the graph chosen (as long as it is defined).

Proof of Theorem 1.10: Define Pm(x) = Px,o,G[|ω| < m]. We claim that Pm is
decreasing in x. This implies that for x < z, the random variable |ω| under Px,o,G is
stochastically dominated by |ω| under Pz,o,G. So L(x) = Ex,o,G[|ω|] ≤ Ez,o,G[|ω|] =
L(z) for all x < z.

We move to prove that Pm is a decreasing function. Write y = (d − 1)x and

Qm(x) = d
d−1Eo

∑(T∧m)−1
k=0 yk. Using (3.1), we have that Pm(x) = Qm(x)/Z(x).

So P ′m(x) = Z(x)−2 · (Q′m(x)Z(x)−Qm(x)Z ′(x)).
Note that Z = Q∞. We have that for any m ∈ N ∪ {∞},

yQ′m(x) = d
d−1 ·Eo

(T∧m)−1∑
k=0

(d− 1)kyk = (d− 1)Ex,o,G[|ω|1{|ω|<m}] · Z(x).

Thus, P ′m(x) ≤ 0 if and only if

Ex,o,G[|ω|1{|ω|<m}] ≤ Ex,o,G[|ω|] · Pm(x)

= Ex,o,G[|ω|1{|ω|<m}] · Pm(x) + Ex,o,G[|ω|1{|ω|≥m}] · Pm(x),

which is if and only if

Ex,o,G[|ω|1{|ω|<m}] · (1− Pm(x)) ≤ Ex,o,G[|ω|1{|ω|≥m}] · Pm(x).

Recall that Pm(x) = Px,o,G[|ω| < m]. If Pm(x) ∈ {0, 1} then the inequality above
holds trivially. If 0 < Pm(x) < 1 then the inequality is equivalent to

Ex,o,G[|ω| | |ω| < m] ≤ Ex,o,G[|ω| | |ω| ≥ m],

which is obviously true always. �

Finally we prove Theorem 1.4, which states that sequences are super-critical
(resp. sub-critical) if and only if I → 0 (resp. I > 0).
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Proof of Theorem 1.4: Jensen’s inequality tells us that for any x > 0, y = (d− 1)x
and α 6= − log y,

eαL(x,G) ≤ Ex,G[eα|ω|] = ZG(x)−1 · d
d−1 ·Eo

T−1∑
k=0

eαkyk =
ZG(xeα)

ZG(x)
.

Now, if (xn)n is a sub-sequence such that ZGn(xn) → ∞, then choosing ε > 0
and zn = xn(1− ε), we have with α = log(1− ε),

I(xn, Gn) =
L(xn, Gn) + 1

ZGn
(xn)

≤ − log(1− ε) + logZGn(xn)− logZGn(zn)

− log(1− ε) · ZGn
(xn)

→ 0.

Thus, ZGn
(xn)→∞ implies that I(xn, Gn)→ 0.

Also, since

I(xn, Gn) =
L(xn, Gn) + 1

ZGn(xn)
≥ 1

ZGn(xn)
,

we have that I(xn, Gn)→ 0 implies that ZGn
(xn)→∞.

Thus,

lim inf
n→∞

ZGn
(xn) =∞ ⇐⇒ lim sup

n→∞
I(xn, Gn) = 0,

lim sup
n→∞

ZGn
(xn) <∞ ⇐⇒ lim inf

n→∞
I(xn, Gn) > 0.

�

5. Mean-field SAW

In this section we give a short account of the mean-field SAW; that is when
Gn = Kn is the complete graph on n vertices.

The main (simple) observation is that on the complete graph one can count
exactly the number of self-avoiding walks of a specific length. Specifically, for a
fixed vertex on ∈ Kn,

SAWk(on,Kn) =

{
(n−1)!

(n−1−k)! 0 ≤ k ≤ n− 1

0 k > n− 1.

Thus, for all 0 ≤ k ≤ n− 1,

Px,Gn [|ω| = n− 1− k] =
xn−1−k|SAWn−1−k(on,Kn)|∑n−1

j=0 x
j |SAWj(on,Kn)|

=
xn−1−k|SAWn−1−k(on,Kn)|∑n−1
j=0 x

n−1−j |SAWn−1−j(on,Kn)|

=
x−k

k!∑n−1
j=0

x−j

j!

= P[P = k | P ≤ n− 1],

where P ∼ Poi(x−1). That is, under Px,Kn the quantity n−1−|ω| has a conditional
Poisson distribution. Specifically,

L(x,Kn) = n− 1− E[P | P ≤ n− 1]. (5.1)

This leaves the task of understanding the conditional expectation above for the
different regimes of x.



534 Ariel Yadin

Since this is the main observation required to prove Theorems 1.5 and 1.6, we
have placed the proofs of these theorems in the appendix.

6. SAW on large girth graphs

We now investigate the consequences of the connections between SAW and non-
backtracking random walk made in Section 3, for sequences of graphs with large
girth.

For this section let (Gn)n be a sequence of d-regular graphs of size |Gn| = n and
girth of Gn being gn. Assume that gn → ∞ as n → ∞. We fix some vertex on ∈
Gn, and denote Ln(x) = L(x, on, Gn), In(x) = I(x, on, Gn), Zn(x) = Zon,Gn(x).
Sometimes we will omit the subscript n when it is clear from the context.

6.1. Sub-critical phase.

Lemma 6.1 (Sub-critical phase). Let (xn)n be a positive sequence such that
limn→∞ xn = x < 1

d−1 . Then,

lim
n→∞

Ln(xn) =
(d− 1)x

1− (d− 1)x
.

Proof : We will prove that in fact that if xn <
1
d−1 , then for yn = (d− 1)xn,

yn
1− yn

− gny
gn
n

1− ygnn
≤ Ln(xn) ≤ yn

1− yn
. (6.1)

Indeed, using (3.3), we only need to bound

Eon [TyT ]

Eon [1− yT ]

from above for y < 1, where T is the self intersection time of a non-backtracking
random walk on Gn. Note that T ≥ gn a.s. Also, k 7→ kyk is decreasing for k >
(− log y)−1. So Eo[TyT ] ≤ gnygn when gn is large enough, and Eo[1−yT ] ≥ 1−ygn .

The lemma now follows because yn < 1 for large enough n and gn →∞. �

6.2. Super-critical phase.

Lemma 6.2. Suppose that G is a transitive graph with girth g and size |G| = n.
Let

τ = min

{
t : max

u,v
|Pu[NB(t) = v]− 1

n | ≤
1
2n

}
be the mixing time of the non-backtracking random walk NB on G, and let T be the
self intersection time of NB. For all m ≥ τ ,

Po[T > k +m] ≥
(

1− 3(k+1)m
2n −m2 · (d− 1)−bgn/2c

)
·Po[T > k].

Proof : We will make use of the fact that uniformly over v,

Pv[NB(t) = v] ≤


0 if t < gn

(d− 1)−bgn/2c if gn ≤ t < τ
3
2n if t ≥ τ.
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The middle case coming from the fact that
{
u : dist(v, u) ≤ gn

2

}
is a tree, so to

hit v at time t with a non-backtracking walk, one must be at distance b gn2 c at time
t− b gn2 c and then move towards v in the next b gn2 c steps.

Fix m ≥ τ . NB[0, k +m] is uniformly distributed on non-backtracking paths of
length k+m starting at NB(0). Thus, conditioned on NB[0, k],NB(k+m) = v, the
walk NB[k, k +m] is uniformly distributed on non-backtracking paths of length m
starting at NB(k), such that the first step is not NB(k − 1) and such that the last
step is at v. Fix v and conditioned on NB[0, k] = A. Set

Ω = Ω(v,A)=

{
ω non-backtracking :

|ω| = m,ω(0) = NB(k), ω(1) 6= NB(k − 1),
ω[1,m] ∩A 6= ∅ , ω(m) = v

}

Ω′ = Ω′(v,A) =

{
ω non-backtracking :

|ω| = m , ω(0) = v,
ω[0,m− 1] ∩A 6= ∅

}
Since for every ω ∈ Ω we have that the reversal of ω is in Ω′ we get that |Ω| ≤ |Ω′|.
Thus, using the fact that m ≥ τ ,

Po

[
NB[k + 1, k +m] ∩A 6= ∅ , NB[0, k] = A,NB(k +m) = v

]
= |Ω| · (d− 1)−m ·Po[NB[0, k] = A,NB(k +m) = v]

≤ |Ω′| · (d− 1)−m ·Po[NB[0, k] = A,NB(k +m) = v]

= Pv[NB[0,m− 1] ∩A 6= ∅]·Po[NB[0, k] = A,NB(k +m) = v]

≤ Pv[NB[0,m− 1] ∩A 6= ∅] ·Po[NB[0, k] = A] · 3

2n
.

Summing over v we obtain

Po

[
NB[k + 1, k +m] ∩A 6= ∅

∣∣ NB[0, k] = A
]
≤ 3

2 ·Po[NB[0,m− 1] ∩A 6= ∅].

Since the uniform distribution is stationary for the non-backtracking random walk
on a regular graph,

1
n

∑
o∈G

Po[NB[0,m− 1] ∩A 6= ∅] ≤ 1
n

∑
o∈G

Eo

[
|NB[0,m− 1] ∩A|

]
= 1

n

m−1∑
t=0

∑
o∈G

Po[NB(t) ∈ A] =
|A|m
n

.

Thus,

1
n

∑
o∈G

Po

[
NB[k + 1, k +m] ∩ NB[0, k] 6= ∅

∣∣ NB[0, k]
]
≤ 3(k + 1)m

2n
.

Also, if NB[k, k+m] 6∈ SAW then there exist 0 ≤ t < t′ ≤ m such that NB(k+t) =
NB(k + t′). We have seen above that for any such pair t < t′, this probability is
bounded by Po[NB(k + t) = NB(k + t′) | NB[0, k]] ≤ (d− 1)−bgn/2c. Thus,

Po

[
NB[k, k +m] 6∈ SAW

∣∣ NB[0, k]
]
≤

∑
0≤t<t′≤m

P
[
NB(k + t) = NB(k + t′)

∣∣ NB[0, k]
]

≤ m2 · (d− 1)−bgn/2c.
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If NB[k, k+m] ∈ SAW,NB[0, k] ∈ SAW and NB[k+ 1, k+m]∩NB[0, k] = ∅, then
NB[0, k +m] ∈ SAW. Thus, combining all the above we obtain that

1
n

∑
o∈G

Po[NB[0, k +m] ∈ SAW]

≥
(

1− 3(k+1)m
2n −m2 · (d− 1)−bgn/2c

)
· 1n
∑
o∈G

Po[NB[0, k] ∈ SAW].

Since G is transitive, Po[NB[0, k] ∈ SAW] does not depend on the choice of starting
vertex o ∈ G, and we obtain the lemma. �

Corollary 6.3. Let (Gn)n be a sequence of transitive graphs such that |Gn| ↗ ∞.
Suppose that the mixing time of the non-backtracking random walk on Gn satisfies
τn = o((d− 1)gn/4) as n→∞, where gn is the girth of Gn.

Then, there exists a constant c > 0 such that for every δ > 0 and all k ≤ δ
6 |Gn|,

Po[T > k] ≥ ce−δk.

Proof : Set pk = Po[T > k]. If we choose m = mn = τn, we may take n large enough
so that m2 · (d− 1)−bgn/2c < 1

4 . By Lemma 6.2 (using the inequality e−2ξ ≤ 1− ξ
valid for all ξ ≤ 1

4 ),

pk ≥ exp
(
−2m2 · (d− 1)−bgn/2c − 3(k−m)m

|Gn| − 3m
|Gn|

)
· pk−m

≥ · · · ≥ exp

−b kmc · 2m2 · (d− 1)−bgn/2c − 3m
|Gn| ·

bk/mc∑
j=1

jm− 3m
|Gn| · b

k
mc

 · pm
≥ exp

(
−2km · (d− 1)−bgn/2c − 3k2

|Gn|
− 3k

|Gn|

)
· exp

(
−2m2 · (d− 1)−bgn/2c

)
.

Thus, if k ≤ β|Gn| then,

pk ≥ e−1/2 · exp
(
− 1

2mk − 3βk − 3
|Gn|k

)
. (6.2)

Since m = τn → ∞ as n → ∞, we have that if β = δ
6 then for all n large enough

(so that 2m >> δ−1), pk ≥ e−1/2 · e−δk. �

Lemma 6.4 (Super-critical phase). Let (Gn)n be a sequence of transitive graphs
such that |Gn| ↗ ∞ with girth gn. Suppose that the mixing time of the non-
backtracking random walk on Gn satisfies τn = o((d− 1)gn/4) as n→∞, where gn
is the girth of Gn.

Then, there exists a constant c > 0 such that for any x > 1
d−1 there exists n0 > 0

such that for all n > n0,

Ln(x) ≥ c(1 ∧ log((d− 1)x)) · |Gn|.

Proof : Set y = (d − 1)x > 1. Choose δ > 0 small enough so that δ = 1 ∧ 1
2 log y.

For any integers 0 < m < M ≤ δ
6 |Gn| we have by Corollary 6.3,

m∑
k=0

ykPo[T > k] ≤ ym+1 − 1

y − 1
,

M∑
k=0

ykPo[T > k] ≥ c ·
M∑
k=0

√
y
k

= c ·
√
yM+1 − 1
√
y − 1

.
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Choose M = b δ6 |Gn|c and m = bM−14 c, so that ym+1√y−M−1 ≤ y−m. Note that
for some universal constant c > 0 we have that m ≥ cδ|Gn|. We can compute:

Px,on,Gn [|ω| ≤ m] =

∑m
k=0 y

kPo[T > k]∑|Gn|−1
k=0 ykPo[T > k]

≤ c−1 · ym+1 − 1
√
yM+1 − 1

·
√
y − 1

y − 1

≤ c−1 · ym+1

√
yM+1

· 1

1−√y−M−1
≤ C · y−cδ|Gn|,

for some constant C > 0. Thus,

Ln(x) ≥ (1− Cy−cδ|Gn|) · cδ|Gn|.
�

6.3. Critical phase.

Lemma 6.5 (Critical phase). For a sequence of d-regular transitive graphs (Gn)n,
of size |Gn| = n and girth gn →∞ as n→∞, we have that at the critical sequence
xn = 1

d−1 ,
1
2Eo[T − 1] ≤ Ln(xn) ≤ d

d−1Eo[T ]− 1.

Specifically, Ln(xn)→∞ and Ln(xn) ≤ d
d−1 (1+o(1))gn(d−1)gn . So Ln has neither

sub-critical nor super-critical behavior.

Proof : Using (3.4) and (3.5) we have that Zn( 1
d−1 ) = d

d−1Eo[T ]→∞, and

Ln( 1
d−1 ) =

Eo[T
2]−Eo[T ]

2Eo[T ]
≥ 1

2Eo[T ]− 1
2 →∞,

where T is the self intersection time of a non-backtracking random walk on Gn
Proposition 1.9 tells us that Ln(x)+1 ≤ Zn(x), so that Ln( 1

d−1 ) ≤ d
d−1Eo[T ]−1.

Since gn is the girth of Gn, we have Pv[NB(gn) = v] ≥ (d−1)−gn . Thus, for any
j ≤ k − gn,

P[NB(j + gn) = NB(j) | NB[0, j]] ≥ (d− 1)−gn .

Thus, for k > gn,

Po[T > k] ≤ Po[T > k − gn] ·P[NB(k) 6= NB(k − gn) | NB[0, k − gn]]

≤ Po[T > k − gn] · (1− (d− 1)−gn)

≤ · · · ≤ (1− (d− 1)−gn)bk/gnc.

This easily shows that

Eo[T ] ≤ 1

(1− (d− 1)−gn) · (1− (1− (d− 1)−gn)1/gn)
≤ (1 + o(1)) · gn(d− 1)gn ,

(using the inequalities 1− ξ ≤ e−ξ and 1− 1
2ξ ≥ e

−ξ, valid 0 < ξ < 1
2 ). �

Remark 6.6. By the proof of Corollary 6.3, as long as τn = o((d−1)gn/4) as n→∞,
taking β = k

|Gn| in (6.2), we have that there exists a constant c > 0 such that

Po[T > k] ≥ c exp
(
−k ·

(
1

2τn
+ 3(k+1)
|Gn|

))
,

where τn is the mixing time of the non-backtracking random walk. If we take k =
bmin{τn,

√
|Gn|}c we get that for some universal constant c′ > 0, Po[T > k] ≥ c′,

which implies that Eo[T ] ≥ c′min{τn,
√
|Gn|} in this case.
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6.4. Proofs of theorems for large girth graphs.

Proof of Theorem 1.7: This is just a combination of Lemmas 6.1, 6.4 and 6.5. �

Finally we prove Theorem 1.8, which computes the critical exponent γ for large
girth graphs.

Proof of Theorem 1.8: Let T be the self intersection time of a non-backtracking
random walk on Gn. Note that since T ≥ gn a.s., which converges to infinity, we
get using (3.4) and (3.5) ZGn

( 1
d−1 ) = d

d−1Eo[T ]→∞, and

L( 1
d−1 , Gn) =

Eo[T
2]−Eo[T ]

2Eo[T ]
≥ 1

2Eo[T ]− 1
2 →∞.

So for the critical sequence xn = 1
d−1 ,

lim
n→∞

logZGn(xn)

log(L(xn, Gn) + 1)
≤ lim
n→∞

log d
d−1 + log Eo[T ]

log Eo[T ] + log(Eo[T ] + 1)− log Eo[T ]− log 2
= 1.

The inequality γ ≥ 1 is immediate from Proposition 1.9, since L(xn, Gn) + 1 ≤
ZGn

(xn).
The sub-critical case xn → x < 1

d−1 just follows from plugging in the values of

L,Z from (3.2) and (3.3).
For the super-critical case xn → x > 1

d−1 , as long as τn = o((d − 1)gn/4) we
can duplicate the super-critical case from the proof of Theorem 1.6: Set zn =
1
2 · (

1
d−1 + xn), so that zn → z := 1

2 ( 1
d−1 + x) > 1

d−1 . By Lemma 6.4, for any w we
have

L(zn, Gn) ≥ c(1 ∧ log((d− 1)zn)) · |Gn| ≥ c(1 ∧ log((d− 1)zn)) · L(w,Gn).

Thus,

lim
n→∞

L(zn, Gn)

log(L(zn, Gn) + 1)
=∞ and lim

n→∞

logL(xn, Gn)

logL(zn, Gn)
= 1.

Consider f(x) := logZGn
(x). Note that xf ′(x) = L(x,Gn). So we have that for

x > z, there exists w ∈ [z, x] such that

logZGn
(x)− logZGn

(z) = f ′(w)(x− z) = 1
wL(w,Gn)(x− z) ≥ x−z

x · L(z,Gn).

Thus, for xn, zn as above,

lim
n→∞

logZGn(xn)

log(L(xn, Gn) + 1)
≥ 1 + lim

n→∞

(xn − zn) · L(zn, Gn)

xn log(L(zn, Gn) + 1)
=∞.

�

Appendix A. Complete graph proofs

A.1. Mean field super-critical regime. First a classical large deviations argument,
which we include for completeness.

Proposition A.1. Let P ∼ Poi(x−1). Then, for all n > x−1,

P[P ≥ n] ≤ (xn)−n · en−
1
x .
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Proof : For any λ > 0, the Laplace transform of P is

E[eλP ] = exp
(
x−1 · (eλ − 1)

)
.

Thus, for any λ > 0,

P[P ≥ n] ≤ E[eλP ]e−λn = exp
(
x−1 · (eλ − 1)− λn

)
.

Minimizing the right hand side above over λ, we obtain λ = log(xn) (which is good
since we assumed xn > 1), so

P[P ≥ n] ≤
(
e
xn

)n · e−1/x.
�

Lemma A.2. For ε > 0 and x = 1+ε
n−1 , we have∣∣∣∣L(x,Kn)− ε

1 + ε
(n− 1)

∣∣∣∣ ≤ nI(ε)n/2

1− I(ε)n
,

where I(ε) = max
{
e−ε

2/8,
√
e/2
}

. Specifically, if (εn)n is a sequence converging to

E ∈ [0,∞] such that n · ε2n →∞ as n→∞, then for the sequence xn = 1+εn
n ,

lim
n→∞

L(xn,Kn)

n− 1
=

E
1 + E

,

where ∞
1+∞ = 1.

Proof : Let P ∼ Poi(x−1), and let Q ∼ Poi( n
1+ε ). So P is stochastically dominated

by Q. Thus, by Proposition A.1,

P[P ≥ n] ≤ P[Q ≥ n] ≤ (1 + ε)−nene
− n

1+ε = exp
(

ε
1+εn

)
· (1 + ε)−n.

We use the inequality eξ ≤ 1 + ξ + ξ2

2 e
ξ, so if ξ < 1, then eξ ≤ 1+ξ

1−ξ2/2 . Plugging in

ξ = ε
1+ε , we obtain that when ε < 1,

exp
(

ε
1+ε

)
(1 + ε)−1 ≤ 1 + 2ε

1 + 2ε+ ε2/2
≤ 1− ε2

8 ,

and if ε ≥ 1 then since ξe−ξ increases when 0 < ξ < 1, with ξ = 1
1+ε we get

exp
(

ε
1+ε

)
(1 + ε)−1 ≤ e · ξe−ξ ≤

√
e

2
.

So we get that P[P ≥ n] ≤ I(ε)n. Thus, for some c = c(ε),

E[P |P ≤ n− 1] ≤ E[P ]

1− P[P ≥ n]
≤ x−1

1− I(ε)n
≤ n− 1

1 + ε
·
(

1 + I(ε)n

1−I(ε)n

)
.

We use this bound with (5.1) to obtain that for x ≥ 1+ε
n−1 ,

L(x,Kn) = n− 1− E[P |P ≤ n− 1] ≥ (n− 1) ·
(

1− 1
1+ε ·

(
1 + I(ε)n

1−I(ε)n

))
≥ ε(n− 1)

1 + ε
− nI(ε)n

1− I(ε)n
.

This proves the lower bound on L(x,Kn).
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For the upper bound, note that by Cauchy-Schwarz

E[P1{P≥n}] ≤
√
E[P 2] · P[P ≥ n] ≤

√
x−2 + x−1 · I(ε)n/2

≤ n · I(ε)n/2.

Thus,

L(x,Kn) = n− 1− E[P |P ≤ n− 1] = n− 1−
E[P ]− E[P1{P≥n}]

1− P[P ≥ n]

≤ n− 1− E[P ] +
E[P1{P≥n}]

1− P[P ≥ n]
≤ ε(n− 1)

1 + ε
+
nI(ε)n/2

1− I(ε)n
.

(In the second inequality is where we use that E[P ] = x−1 = n−1
1+ε .) �

Remark A.3. Note that Lemma A.2 gives more than required for the super-critical
phase in Theorem 1.5. For εn >> n−1/2, we have that the expected length L(x,Kn)

is very near εn(n−1)
1+εn

as n→∞.

A.2. Mean field critical regime.

Lemma A.4. There exists a constant α > 0 such that for x = xn = 1
n−1 ,

lim
n→∞

L(xn,Kn)√
n− 1

= α.

Proof : Let (Pk)k be i.i.d. Poisson-1 random variables, and let P =
∑n−1
k=1 Pk. So

P ∼ Poi(x−1). Since E[P ] = n− 1 and Var[P ] = n− 1 we have by the central limit

theorem that the sequence Xn := P−(n−1)√
n−1 converges in distribution to a standard

Gaussian N ∼ N (0, 1).
From this, a simple application of the Portmanteau Theorem gives that

E[P |P ≤ n− 1]− (n− 1)√
n− 1

= E[Xn|Xn ≤ 0]→ E[N |N ≤ 0].

So setting α := −E[N |N ≤ 0] = E |N | > 0 we have that when x = 1
n−1 ,

1√
n−1 · L(xn,Kn)→ α.

�

A.3. Mean field sub-critical regime.

Lemma A.5. For any ε, δ > 0 there exists n0 > 0 such that for all n > n0, if
x = 1−ε

n−1 then,

1− ε
ε
· e−δ ·

(
1− 3

n

)
≤ L(x,Kn) ≤ 1− ε

ε
.

Consequently, if (xn)n is such that limn→∞(nxn) = 1− ε then

lim
n→∞

L(xn,Kn) =
1− ε
ε

.

Proof : For the upper bound we use (3.3) to deduce that

L(x,Kn) ≤ x(n− 2)

1− x(n− 2)
≤ ε

1− ε
.
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For the lower bound, by (3.2),

ZKn
(x) ≤ n− 1

n− 2
· 1

1− x(n− 2)
≤ n− 1

n− 2
· 1

ε
.

Note that 1− ξ ≥ e−2ξ for ξ ≤ 1
4 , so for any fixed δ > 0,

L(x,Kn) = ZKn
(x)−1 ·

n−1∑
k=0

kxk|SAWk(Kn)| ≥ ε · n−2n−1 ·
∑

k≤(n−1)/4

k(1− ε)k
k−1∏
j=0

(
1− j

n−1

)
≥ ε · n−2n−1 ·

∑
k≤(n−1)/4

k(1− ε)k exp
(
− k2

n−1

)
≥ n−2

n−1 · e
−δ ·

∑
k≤
√
δ(n−1)

k(1− ε)kε

≥ e−δ · n−2n−1 ·
1− ε
ε
·
(

1− (1− ε)
√
δ(n−1)

)
.

Taking n→∞ we have that for all δ > 0,

lim
n→∞

L( 1−ε
n−1 ,Kn) ≥ e−δ · 1− ε

ε
,

so if (xn)n is such that limn→∞(nxn) = 1− ε then

lim
n→∞

L(xn,Kn) =
1− ε
ε

.

�

A.4. Proofs of theorems for mean field case.

Proof of Theorem 1.5: Combining of Lemmas A.2, A.4 and A.5 we have the asymp-
totics for the expected length L.

By Proposition 1.9, we get that for any ε > 0,

ZKn
( 1+ε
n ) ≥ L( 1+ε

n ,Kn) + 1→∞,

by Lemma A.2, and

ZKn
( 1−ε
n ) ≤ 1

1−(1−ε)n−2n
→ 1

ε <∞,

by (3.2).
This implies that ( 1

n )n is a critical sequence, and that in the super-critical case
I(xn, Gn)→ 0.

Also, in the sub-critical case where nxn → 1− ε, we have that

I(xn,Kn) =
L(xn,Kn) + 1

ZKn(xn)
≥ (L(xn,Kn) + 1) ·

(
1− (1− ε)n−2n

)
→ 1.

�

We now prove Theorem 1.6, calculating γ for sequences in the case where Gn =
Kn, the complete graph on n vertices.

Proof of Theorem 1.6: We start with the critical case xn = 1
n−2 . In this case we

have by (3.4) and (3.5) that

n−2
2(n−1) · ZGn

(xn) = 1
2Eo[T ] ≤ Eo[T

2 + T ]

2Eo[T ]
= L(xn, Gn) + 1 ≤ ZGn

(xn).
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Since Eo[T ]→∞,

lim
n→∞

logZGn
(xn)

log(L(xn, Gn) + 1)
= 1.

In the sub-critical case where (nxn)→ 1− ε, we have by (3.2)

ZGn(xn) ≤ n−1
(n−2)(1−(n−2)xn)

→ 1
ε ,

and L(xn, Gn) + 1→ 1
ε , so in this case as well,

lim
n→∞

logZGn
(xn)

log(L(xn, Gn) + 1)
= 1.

Finally, in the super-critical case (nxn) → 1 + ε, set zn = 1
2 · (

1
n + xn). Then

nzn → z := 1 + 1
2ε, and we have by Lemma A.2 that as n→∞,

L(zn, Gn) ≥ (1− o(1)) ε
2+ε · n ≥ (1− o(1)) ε

2+ε · L(xn, Gn).

Thus,

lim
n→∞

L(zn, Gn)

log(L(zn, Gn) + 1)
=∞ and lim

n→∞

logL(xn, Gn)

logL(zn, Gn)
= 1.

Consider f(x) := logZGn(x). Note that xf ′(x) = L(x,Gn). So we have that for
x > z, there exists w ∈ [z, x] such that

logZGn(x)− logZGn(z) = f ′(w)(x− z) = 1
wL(w,Gn)(x− z) ≥ x−z

x · L(z,Gn).

Thus, for xn, zn as above,

lim
n→∞

logZGn(xn)

log(L(xn, Gn) + 1)

≥ lim
n→∞

logZGn
(zn)

log(L(zn, Gn) + 1)
+

(xn − zn) · L(zn, Gn)

zn · log(L(zn, Gn) + 1)

≥ 1 + ε
2(1+ε) · lim

n→∞

L(zn, Gn)

log(L(zn, Gn) + 1)
=∞.

�
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