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Abstract. It is shown that every spectrum of a finite irreducible Markov generator whose eigen-
values are real and of geometric multiplicity 1 can be obtained as the spectrum of an irreducible
pure-birth Markov process with jumps from the right-most boundary to all the other points. A
whole isospectral family of such processes is exhibited and their mixing rates are compared.

1. Introduction

The investigation of the spectra of finite Markov generators was first motivated by the quest
of quantitative bounds on the convergence to equilibrium of the corresponding processes, see for
instance the reference book Levin et al. (2009). There is also a classification reason: what are the
possible spectra of Markov generators?, and for such a given spectrum, is there a simple represen-
tative Markov process? This structural question is related to the previous motivation, as ergodic
finite isospectral Markov generators can be intertwined and under certain circumstances this rela-
tion enables good transfers of information about the speed of convergence, see e.g. Miclo (2018);
Miclo and Patie (2021). Our goal here goes in this general direction, by providing a simple family
of Markov generators for real spectra with geometric multiplicity 1.

Let us start by recalling some general definitions. For fixed n P N, let Mpnq be the space of all
nˆn matrices with real entries. Then for any fixed A PMpnq, there exists a complex, non-singular
and nˆ n matrix S such that A “ S´1JS, where J is the Jordan canonical form, i.e.
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J B

¨

˚

˚

˚

˝

Jn1pλ1q 0
Jn2pλ2q

. . .
0 Jnl

pλlq

˛

‹

‹

‹

‚

.

Here nk P N pk P JlK B t1, 2, ..., luq,
ř

kPJlK nk “ n, the Jordan block Jnk
pλkq is given by the

nk ˆ nk matrix

Jnk
pλkq B

¨

˚

˚

˚

˝

λk 1 0
. . . . . .

λk 1
0 λk

˛

‹

‹

‹

‚

and the eigenvalues λk P C pk P JlKq, while λk pk P JlKq are not necessarily distinct.
The Jordan spectrum of matrix A is defined as the multi-set

σJpAq B tpλk, nkq : k P JlKu,

where each pλk, nkq corresponds to the Jordan block Jnk
pλkq. The traditional geometric and

algebraic spectra of A are the multi-sets respectively defined by

σgpAq B tλk : k P JlKu,
σapAq B tλk rnks : k P JlKu,

namely each Jordan block corresponding to pλk, nkq, for k P JlK, brings a geometric (respectively
algebraic) multiplicity of 1 (resp. nk) to the eigenvalue λk of A.

Denote by Mrpnq the set of matrices A PMpnq whose spectrum is real, i.e. for all pλ,mq P σJpAq,
we have λ P R.

Sets of the form S B tpλk, nkq P Cˆ N : k P JlKu are said to be uni-spectral when they satisfy
the following conditions:

‚
ř

kPJlK nk “ n and in particular l P JnK,
‚ pλ1, n1q “ p0, 1q,
‚ for all k P J2, lK, the real part of λk is positive,
‚ for all k ‰ k1 P JlK, we have λk ‰ λk1 .

The uni-spectral set S will be interpreted as a multi-set whose elements all have multiplicity 1
(here multiplicity is understood in the sense of multi-sets, when S will correspond to a spectrum,
the multiplicity will thus stand for the geometrical one). The uni-spectral set S is said to be real
when all the λk are real (and thus λk ą 0 for all k P J2, nK). Note that without lost of generality, we
can and will assume that the elements of a real uni-spectral set S are indexed so that k ă k1 P JlK
implies λk ă λk1 .

The set of (respectively real) uni-spectral multi-sets will be denoted Upnq (resp. Urpnq).
One of the main purposes of this paper is to see that each uni-spectral set can be seen as the

spectrum of a very simple Markov process, and even of an interesting family of them.
More precisely, we are interested in the following subclasses of Mpnq. First let Spnq be the set

of L P Mpnq which are irreducible skip-free Markov generators, namely which satisfy the
following properties:

‚ Markov generator: off-diagonal entries of L are non-negative and the row sums are null.
‚ Irreducibility: for any x ‰ y P JnK, there exists a path in JnK, p B pp0, p1, ..., plq with
l P N, such that p0 “ x, pl “ y and for any k P JlK, Lppk´1, pkq ą 0.

‚ Skip-free: for all x, y P JnK with y ą x` 1, we have Lpx, yq “ 0.
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The second subclass we will study is T pnq, the set of L P Spnq which are irreducible pure-birth
Markov generators, namely which satisfy the additional property:

‚ Pure-birth: for any x P Jn´ 1K and y R tx, x` 1u, we have Lpx, yq “ 0.

Remark 1.1. When the pure-birth condition is replaced by the following birth-death property:
‚ Birth-death: for any x P Jn´ 1K and y R tx´ 1, x, x` 1u, we have Lpx, yq “ 0.

we get the class of irreducible birth-death Markov generators, which is intermediary between
Spnq and T pnq, and which plays an important role in the constructive theory of denumerable
Markov processes, see the book Yang (1990). Irreducible birth-death Markov generators are used as
approximations (as n goes to infinity) of general birth and death processes on Z`. Note nevertheless
that the Markov generators from these three classes can jump from their right-most boundary n to
any other point in the state space.

Here we will be interested in the following subclasses,

Srpnq B Spnq XMrpnq,

Trpnq B T pnq XMrpnq,

and more precisely into their spectral properties, so denote

σJp´Srpnqq B tσJp´Lq : L P Srpnqu,

σJp´Trpnqq B tσJp´Lq : L P Trpnqu.
The interest of these classes is:

Theorem 1.2. For any fixed n P N, we have

σJp´Srpnqq “ σJp´Trpnqq “ Urpnq

We believe the same result is true without the requirement that the eigenvalues are real, but it
would require a better understanding of the significance of complex eigenvalues:

Conjecture 1.3. For any fixed n P N, we have

σJp´Spnqq “ σJp´T pnqq “ Upnq.

Theorem 1.2 is a first step in the direction of this challenging conjecture.

In the following section, we will be exhibiting an interesting isospectral family from T pnq whose
spectrum is a given uni-spectral set, this will be the important step in the proof of Theorem 1.2. In
the last section we will compare the mixing rates of the elements of this family, see Theorem 3.1.

2. An isospectral family

The purpose of this section is to prove Theorem 1.2.

We need some preparations.

Proposition 2.1. Let L P Srpnq. Then the Jordan spectrum of ´L is a uni-spectral set.

Proof : We first prove the smallest eigenvalue λ0 of ´L is 0 and has algebraic multiplicity 1. For
this, let

q “ max
1ďiďn

t´Lpi, iqu , B “ L` q ¨ I,

where I is the n ˆ n identity matrix. Then B is nonnegative and irreducible and Theorem 1.5 of
Seneta (2006) can be applied to B: it admits an eigenvalue λBmax which is maximal in absolute
value and whose algebraic multiplicity is 1. According to Corollary 1 page 8 of Seneta (2006), we
have λBmax “ q since the row sums of B are all equal to q. The spectral decomposition of L is
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obtained from that of B by a mere translation of the spectrum by q and the above assertions about
λ0 “ ´λ

B
max ` q “ 0 follow.

Next we prove the geometric multiplicity of any eigenvalue of ´L is 1. Let λ be an eigenvalue of
´L and f “ pfpiqq1ďi,jďn be a corresponding non-zero eigenvector. We have

@ 1 ď i ă n, ´Lrf spiq “

i`1
ÿ

j“1

´Lpi, jqfpjq “ λfpiq ,

from which we deduce

fpi` 1q “
1

´Lpi, i` 1q

«

λfpiq `
i
ÿ

j“1

Lpi, jqfpjq

ff

. (2.1)

This means fpi ` 1q can be determined by fp1q, ¨ ¨ ¨ , fpiq. We must have fp1q ‰ 0, otherwise
(2.1) implies f ” 0. It follows that tcf : c P Rzt0uu is the set of all the eigenvectors associated to λ.
Therefore the dimension of the eigenspace related to λ is 1, which means the geometric multiplicity
of λ is 1. See Section 1.4 of Horn and Johnson (1990). �

Proposition 2.2. Given S “ tpλk, nkq P R`ˆN : k P JlKu P Urpnq, we denote 0 “ θ1 ă θ2 “ ¨ ¨ ¨ “
θn2`1 ă θn2`2 “ ¨ ¨ ¨ “ θn2`n3`1 ă ¨ ¨ ¨ ď θn the elements of the multiset tλkrnks : k P JlKu. There
exists a family of irreducible pure-birth Markov generators pLxqxPp0,θ2q, such that the Jordan spectra
of ´Lx are equal to S for all x P p0, θ2q. More precisely, the isospectral family pLxqxPp0,θ2q is given
by

Lx B

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´pθ2 ´ xq θ2 ´ x 0 ¨ ¨ ¨ 0 0 0
0 ´θ3 θ3 ¨ ¨ ¨ 0 0 0
0 0 ´θ4 θ4 ¨ ¨ ¨ 0 0
...

. . . . . . . . . . . .
...

...

0 0 0
. . . ´θn´1 θn´1 0

0 0 0 ¨ ¨ ¨ 0 ´θn θn
u2 u3 u4 ¨ ¨ ¨ un´1 un ´x

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (2.2)

where for any 0 ă x ă θ2,

u2 B x
n
ź

k“3

θk ´ θ2 ` x

θk
ą 0, (2.3)

@ 3 ď i ď n, ui B
xpθ2 ´ xq

θi

n
ź

k“i`1

θk ´ θ2 ` x

θk
ą 0 (2.4)

(with the usual convention that for i “ n, the empty product is equal to 1, note that x “
řn
i“2 ui).

Proof : For any fixed x P p0, θ2q, to prove that the Jordan spectrum of ´Lx in (2.2) is S, by
Proposition 2.1, we only need to prove the algebraic spectrum of ´Lx is t0, θ2, ¨ ¨ ¨ , θnu. Define the
diagonal matrix

L˚ B

¨

˚

˚

˚

˚

˚

˝

´θ2
´θ3 0

. . .
0 ´θn

0

˛

‹

‹

‹

‹

‹

‚
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and for any s B ps2, ..., snq P Rn´1,

Lx,s B

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´pθ2 ´ xq θ2 ´ x 0 ¨ ¨ ¨ 0 0 0
0 ´θ3 θ3 ¨ ¨ ¨ 0 0 0
0 0 ´θ4 θ4 ¨ ¨ ¨ 0 0
...

. . . . . . . . . . . .
...

...

0 0 0
. . . ´θn´1 θn´1 0

0 0 0 ¨ ¨ ¨ 0 ´θn θn
s2 s3 s4 ¨ ¨ ¨ sn´1 sn ´x

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Furthermore, for any s P Rn´1, define

Apa, sq B |aI ` Lx,s| ´ |aI ` L
˚|.

If for some given s P Rn´1, we have

@ a P R, Apa, sq “ 0, (2.5)

then Lx,s and L˚ have the same eigenvalues with the same corresponding algebraic multiplicities.
Actually, we will prove that (2.5) is equivalent to si “ ui p2 ď i ď nq, where ui is given in (2.3).
For this, split with respect to the last row of the first determinant and we get

Apa, sq “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
s2 s3 ¨ ¨ ¨ sn a´ x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ θ2 θ2 ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
s2 s3 ¨ ¨ ¨ sn ´x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ θ2 θ2 ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 ¨ ¨ ¨ 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x ´x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 0 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
0 0 ¨ ¨ ¨ 0 a

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a´ pθ2 ´ xq θ2 ´ x ¨ ¨ ¨ 0 0
0 a´ θ3 θ3 0 0
...

...
. . . . . .

...
0 0 ¨ ¨ ¨ a´ θn θn
s2 s3 ¨ ¨ ¨ sn ´x

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,



1764 Laurent Miclo and Chi Zhang

where we used that the second and third matrices in the second equality have all rows equal except
for the first one. It follows that

Apa, sq “ xpa´ θ3q ¨ ¨ ¨ pa´ θnqa` pa´ θ2 ` xqpa´ θ3q ¨ ¨ ¨ pa´ θnqp´xq `
n
ÿ

i“2

si ¨Gipsq

“ x ¨ pθ2 ´ xqpa´ θ3q ¨ ¨ ¨ pa´ θnq `
n
ÿ

i“2

si ¨Gipsq, (2.6)

where
$

’

’

&

’

’

%

G2psq B p´1qn´1pθ2 ´ xqθ3 ¨ ¨ ¨ θn

G3psq B p´1qn´2pa´ θ2 ` xq ¨ θ3 ¨ ¨ ¨ θn

@ 4 ď i ď n, Gipsq B p´1qn`1´ipa´ θ2 ` xqpa´ θ3q ¨ ¨ ¨ pa´ θi´1q ¨ θi ¨ ¨ ¨ θn.

(2.7)

So Apa, sq can be written as

Apa, sq C Fn´2psqa
n´2 ` ¨ ¨ ¨ ` F1psqa` F0psq, (2.8)

where the Fipsq, for 0 ď i ă n, are polynomial functions of s1, ¨ ¨ ¨ , sn, and hence (2.5) is equivalent
to

Fn´2psq “ 0, Fn´3psq “ 0, ¨ ¨ ¨ , F0psq “ 0. (2.9)

Now assume that (2.9) holds. By (2.6)-(2.8), we have

Fn´2psq “ xpθ2 ´ xq ´ θnsn

and thus

sn “
xpθ2 ´ xq

θn
. (2.10)

Further, by (2.6)-(2.8) and (2.10), we have

Fn´3psq “ ´xpθ2 ´ xq
n
ÿ

i“3

θi ` snθn

n´1
ÿ

i“2

θ
1

i ` sn´1θn´1θn,

“ ´xpθ2 ´ xq pθn ´ θ2 ` xq ` sn´1θn´1θn,

where θ12 “ θ2 ´ x, θ
1

i “ θi, for 3 ď i ď n, and thus

sn´1 “
xpθ2 ´ xq

θn´1
¨
pθn ´ θ2 ` xq

θn
. (2.11)

Similarly,

Fn´4psq “ xpθ2 ´ xq
ÿ

3ďi1ăi2ďn

θi1θi2 ´ snθn
ÿ

2ďi1ăi2ăn

θ
1

i1θ
1

i2 ´ sn´1

n
ź

k“n´1

θk ¨
n´2
ÿ

i“2

θ
1

i ´ sn´2

n
ź

k“n´2

θk

“ xpθ2 ´ xq

«

ÿ

3ďi1ăi2ďn

θi1θi2 ´
ÿ

2ďi1ăi2ăn

θ
1

i1θ
1

i2 ´ pθn ´ θ2 ` xq
n´2
ÿ

i“2

θ
1

i

ff

´ sn´2

n
ź

k“n´2

θk

“ xpθ2 ´ xq

«

pθn ´ θ
1

2q

n´1
ÿ

i“3

θi ´ pθn ´ θ2 ` xq
n´2
ÿ

i“2

θ
1

i

ff

´ sn´2

n
ź

k“n´2

θk

“ xpθ2 ´ xq pθn ´ θ2 ` xq pθn´1 ´ θ2 ` xq ´ sn´2

n
ź

k“n´2

θk,
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from which we have

sn´2 “
xpθ2 ´ xq

θn´2

n
ź

k“n´1

θk ´ θ2 ` x

θk
.

For the iteration argument, suppose that

sn´l “
xpθ2 ´ xq

θn´l

n
ź

k“n´l`1

θk ´ θ2 ` x

θk
(2.12)

“
xθ

1

2

θ
1

n´l

n
ź

k“n´l`1

θ
1

k ´ θ
1

2

θ
1

k

for l “ 0, 1 ¨ ¨ ¨ ,m´ 1 ă n´ 2, where
śn
k“n`1

θ
1

k´θ
1

2

θ
1

k

:“ 1. We will prove that it also holds for l “ m.

In fact, by (2.6)-(2.8), we have

Fn´m´2psq

“ p´1qmxθ
1

2

ÿ

3ďi1ă¨¨¨ăimďn

θi1 ¨ ¨ ¨ θim ´ p´1qmsnθ
1

n

ÿ

2ďi1ă¨¨¨ăimăn

θ
1

i1 ¨ ¨ ¨ θ
1

im ´ p´1qmsn´1

n
ź

k“n´1

θ
1

k ¨
ÿ

2ďi1ă¨¨¨ăim´1ďn´2

θ
1

i1 ¨ ¨ ¨ θ
1

im´1

´ ¨ ¨ ¨ ´ p´1qmsn´m`1

n
ź

k“n´m`1

θ
1

k ¨

n´m
ÿ

i“2

θ
1

i ´ p´1qmsn´m

n
ź

k“n´m

θ
1

k.

So

sn´m

n
ź

k“n´m

θ
1

k

“ xθ
1

2

ÿ

3ďi1ă¨¨¨ăimďn

θi1 ¨ ¨ ¨ θim ´ snθ
1

n

ÿ

2ďi1ă¨¨¨ăimăn

θ
1

i1 ¨ ¨ ¨ θ
1

im ´

n´1
ÿ

j“n´m`1

»

–sj ¨
n
ź

k“j

θ
1

k ¨
ÿ

2ďi1ă¨¨¨ăij`m´năj

θ
1

i1 ¨ ¨ ¨ θ
1

ij`m´n

fi

fl

“ xθ
1

2

«

ÿ

3ďi1ă¨¨¨ăimďn

θi1 ¨ ¨ ¨ θim ´
ÿ

2ďi1ă¨¨¨ăimăn

θ
1

i1 ¨ ¨ ¨ θ
1

im

ff

´

n´1
ÿ

j“n´m`1

»

–xθ
1

2 ¨

n
ź

k“j`1

´

θ
1

k ´ θ
1

2

¯

¨
ÿ

2ďi1ă¨¨¨ăij`m´năj

θ
1

i1 ¨ ¨ ¨ θ
1

ij`m´n

fi

fl

“ xθ
1

2pθn ´ θ
1

2q

»

–

ÿ

3ďi1ă¨¨¨ăim´1ăn

θ
1

i1 ¨ ¨ ¨ θi1m´1
´

ÿ

2ďi1ă¨¨¨ăim´1ăn´2

θ
1

i1 ¨ ¨ ¨ θ
1

im´1

fi

fl

´

n´2
ÿ

j“n´m`1

»

–xθ
1

2 ¨

n
ź

k“j`1

´

θ
1

k ´ θ
1

2

¯

¨
ÿ

2ďi1ă¨¨¨ăij`m´năj

θ
1

i1 ¨ ¨ ¨ θ
1

ij`m´n

fi

fl

“ xθ
1

2

n
ź

k“n´m`2

´

θ
1

k ´ θ
1

2

¯

¨

«

n´m`1
ÿ

i“3

θ
1

i ´

n´m
ÿ

i“2

θ
1

i

ff

“ xθ
1

2

n
ź

k“n´m`1

´

θ
1

k ´ θ
1

2

¯
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“ xθ
1

2

n
ź

k“n´m`1

pθk ´ θ2 ` xq ,

which means the equality (2.12) holds for l “ m.
Altogether, we have deduced that, if (2.9) holds, then (2.12) is true for l P J0, n´ 2K. Conversely,

if (2.12) holds for l P J0, n´ 2K, then it is easy to check from above deduction that (2.9) is also true.
That is, for fixed x P p0, θ2q, (2.5) is equivalent to si “ ui for any 2 ď i ď n, which means Lx in
(2.2) and L˚ have the same eigenvalues and the same corresponding algebraic multiplicities.

It remains to see that x “
řn
i“2 si. Actually, by (2.6), (2.7) and (2.9), we have

0 “ F0psq “

«

x ¨ p´1qn´2 `
n
ÿ

i“2

si ¨ p´1qn´1

ff

pθ2 ´ xqθ3 ¨ ¨ ¨ θn,

from which we get the equality. This completes the proof. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2: By Proposition 2.1, we have σJp´Srpnqq Ă Urpnq, while from Proposition 2.2,
we have Urpnq Ă σJp´Trpnqq. So σJp´Srpnqq Ă σJp´Trpnqq. Besides, it is easy to see that
σJp´Trpnqq Ă σJp´Srpnqq, which implies σJp´Trpnqq “ σJp´Srpnqq “ Urpnq. �

3. Comparison of the speed of convergence

It is interesting to compare the mixing rates between the elements of the family described in
Proposition 2.2.

For x P p0, θ2q, let Lx be the Markov generator defined in (2.2) and consider πx the associated
invariant measure on JnK, as well as pPxptqqtě0 the corresponding semi-group. For any x P p0, θ2q
and t ě 0, Pxptq is just the JnK ˆ JnK matrix expptLxq. Any probability measure µ on JnK is seen
as a row vector and µPxptq then stands for the law of the position at time t of a Markov process
starting with µ as initial distribution and whose generator is Lx. For large t ě 0, this law converges
toward πx and let us evaluate its mixing rate through

Exptq B maxt}πx ´ µPxptq}tv : µ P PpJnKqu
“ maxt}πx ´ δzPxptq}tv : z P JnKu,

where }¨}tv stands for the total variation norm, PpJnKq is the convex set of probability measures on
JnK and δz is the Dirac mass at z P JnK. The last equality is a consequence of the fact that the
Dirac masses are exactly the extreme points of PpJnKq.

Our goal here is to prove the following comparison:

Theorem 3.1. For any x, y P p0, θ2q, we have

@ t ě 0, Exptq ď ηx,yEyptq
with

ηx,y B
θ2 ` px_ yq ´ 2px^ yq

θ2 ´ px_ yq

“ 1` 2
|y ´ x|

θ2 ´ px_ yq
ě 1

Note that when x “ y, the inequality is indeed and equality.
For x P p0, θ2q and ε P p0, 2s, define the mixing time

τxpεq B inftt ě 0 : Exptq ď εu.

The following result is immediately deduced from Theorem 3.1:
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Corollary 3.2. For any x, y P p0, θ2q and ε P p0, 2s, we have

τxpεq ď τypε{ηx,yq.

Note for a given irreducible finite Markov process such as the one generated by Lθ2{2, it is always
possible to find 0 ă A ď A1 (depending on Lθ2{2, i.e. on θ2 ď θ3 ď ¨ ¨ ¨ ď θn) such that

@ ε P p0, 2s, A lnp1{εq ď τθ2{2pεq ď A1 lnp1{εq

(the first bound is obtained by considering that the process has not jumped before a time of order
lnp1{εq and the second bound is deduced from exponential convergence in total variation).

It then follows from Corollary 3.2 that uniformly in x P p0, θ2q not very close to θ2, the mixing
times τxpεq and τθ2{2pεq are of the same order as ε goes to 0`.

To go in the direction of Theorem 3.1, let us start by a general observation on the intertwining
relations that can be abstractly deduced from Theorem 1.2, even if it will not be directly useful in
the sequel.

Lemma 3.3. Consider L an irreducible Markov generator on JnK whose Jordan spectrum belongs
to Urpnq. Then there exist rL P Trpnq and two invertible Markov matrices Λ and rΛ such that

LΛ “ ΛrL,

rLrΛ “ rΛL.

Proof : It was seen in Miclo (2018) that two irreducible Markov generators with the same Jordan
spectrum can be intertwined via invertible Markov kernels. To apply this result, it is sufficient to
use Proposition 2.2, which provides with an irreducible pure-birth Markov generator rL with the
same Jordan spectrum as L. �

Remark 3.4. To relate the speeds of convergence of the Markov processes generated by L and rL, one
needs quantitative informations on Λ and rΛ, see e.g. Miclo and Patie (2021). We will not explore
further this direction here.

Now let us study the similarity between any two Markov generators Lx and Ly as defined in (2.2).
Define the JnKˆ JnK lower triangular matrix Λa,b p0 ď a, b ă θ2q as follows.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Λa,bp1, 1q B 1

Λa,bp2, 1q B
b´ a

θ2 ´ a

@ 2 ď i ď n, Λa,bpi, iq B
θ2 ´ b

θ2 ´ a

@ 1 ď j ă i ď n, Λa,bpi, jq B
θ
1

2

θ
1

j`1

»

–

i
ź

k“j`2

θk ´ θ
1

2

θk

fi

flΛa,bp2, 1q

(3.1)

where θ12 “ θ2´ b, θ
1

i “ θi, for 3 ď i ď n, with the convention
śi
k“i`1

θk´θ
1

2
θk

“ 1. Then we have the
following intertwining results.

Proposition 3.5. For any two irreducible pure-birth Markov generators Lx and Ly as defined in
(2.2), with 0 ă x ă y ă θ2, there exist two invertible Markov matrices Λ and rΛ such that

LxΛ “ ΛLy, (3.2)

LyrΛ “ rΛLx. (3.3)
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More precisely, we can take

Λ “ Λx,y

rΛ “ rΛx,y B p1` εq´1 rπx ` εΛy,xs

where, by slightly abusing notations, πx stands for the matrix whose rows are equal to πx, the
stationary distribution of Lx, and ε is a constant with absolute value small enough. In fact,

@ 1 ď j ď n, πxpjq “ Λ0,xpn, jq (3.4)

and it is sufficient to take

´C ď ε ď C ¨
pθ2 ´ xq

py ´ xq
, (3.5)

where

C “
xpθ2 ´ yq

θ2θn

n
ź

k“3

θk ´ θ2 ` x

θk
.

Proof : Denote the rows of Λ by Λpi, ¨q, for 1 ď i ď n. From (3.2), we have

@ 1 ď i ă n, ´θ
2

i`1Λpi, ¨q ` θ
2

i`1Λpi` 1, ¨q “ Λpi, ¨qLy, (3.6)
n´1
ÿ

i“1

ui`1pxqΛpi, ¨q ´ xΛpn, ¨q “ Λpn, ¨qLy, (3.7)

where θ22 “ θ2 ´ x, θ
2

i “ θi, for 3 ď i ď n. By (3.6), we get

@ 1 ď i ă n, Λpi` 1, ¨q “ θ
2´1
i`1 Λpi, ¨q

”

θ
2

i`1I ` Ly

ı

. (3.8)

Let us choose Λp1, ¨q “ p1, 0, ¨ ¨ ¨ , 0q. Then for any 2 ď i ď n, Λpi, ¨q can be derived from a step
by step calculation, and this exactly leads to (3.1). And it is not difficult to check that (3.1) also
satisfies (3.7). Besides, it is easy to see that for all j ď i, Λpi, jq ą 0 when x ă y, and by (3.8), we
have

@ 1 ď i ă n, Λpi` 1, ¨q1 “ Λpi, ¨q1 “ Λp1, ¨q1 “ 1.

So, Λ “ Λx,y is a Markov matrix and satisfies (3.2).
Next, we prove that (3.3) and (3.4) hold. Actually, exchanging x and y in (3.2), we get

Λy,xLx “ LyΛy,x. (3.9)

Note that, when y “ 0, (3.9) is also true and Λ0,x is also a Markov matrix. In this case, the n-th
line of L0 is zero and we get

Λ0,xpn, ¨qLx “ 0.

So, the n-th row Λ0,xpn, ¨q is just the stationary distribution of Lx, and hence (3.3) follows directly.
Finally, we prove that rΛ is a Markov matrix under (3.5). In fact, similar to Λx,y, it holds Λy,x1 “ 1

and thus rΛ1 “ 1. Furthermore, it is easy to check that (3.5) implies rΛpi, jq ą 0, for all j ď i. This
completes the proof.

�

Despite the kernels rΛx,y are Markov for x ă y, they do not lead to an interweaving relation in
the sense of Miclo and Patie (2021). Indeed, such a relation would require that we can write

Λx,yrΛx,y “

ż 8

0
expptLxq νpdtq

for a probability ν on R`. This is not possible, due to the component πx in rΛx,y (which induces that
ν should give a positive weight to `8). Nevertheless, we believe (3.3) holds with more appropriate
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Markov kernels rΛ than rΛx,y, so that an interweaving relation could indeed be worked out. But here,
instead of using rΛx,y, we will only take into account the kernels Λx,y, even for x ą y, when they are
no longer Markovian.

Here is a semi-group type property satisfied by the family pΛx,yqx,yPp0,θ2q.

Lemma 3.6. For any x, y, z P p0, θ2q, we have

Λx,yΛy,z “ Λx,z.

Particularly, we have
Λx,yΛy,x “ Λx,x “ I.

Proof : Since

LxΛx,y “ Λx,yLy

LyΛy,z “ Λy,zLz,

it holds that
LxΛx,yΛy,z “ Λx,yLyΛy,z “ Λx,yΛy,zLz.

Note that if Λ is a lower triangular matrix and
#

Λp1, ¨q “ p1, 0, ¨ ¨ ¨ , 0q,

LxΛ “ ΛLz,
(3.10)

then Λpi, ¨q, for 2 ď i ď n, can be determined by a step by step calculation. It is easy to see Λx,yΛy,z
and Λx,z are both lower triangular matrices and satisfy (3.10), so they are equal.

�

Define the matrix norm ||| ¨ ||| via

@ A PMpnq, |||A||| B max
i

ÿ

j

|Api, jq|.

Another useful observation is:

Lemma 3.7. For any a, b P p0, θ2q, we have

|||Λa,b||| ď

"

1 , if a ď b
θ2`a´2b
θ2´a

, otherwise

Proof : ‚ When a ď b, since Λa,b is Markovian, it is clear that |||Λa,b||| “ 1.
‚ When a ą b, since

@ j ă i, Λa,bpi, jq ă 0;

@ i, Λa,bpi, iq ą 0;
ÿ

j

Λa,bpi, jq “ 1,

we have

|||Λa,b||| “ max

#

Λa,bpi, iq ´
ÿ

j‰i

Λa,bpi, jq : 1 ď i ď n

+

“ maxt2Λa,bpi, iq ´ 1 : 1 ď i ď nu

“ 2Λa,bp2, 2q ´ 1

“
θ2 ` a´ 2b

θ2 ´ a
.

�
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We can now come to the

Proof of Theorem 3.1: Fix x, y P p0, θ2q. First let us show that

πxΛx,y “ πy. (3.11)

From (3.2), we deduce that

πxΛx,yLy “ πxLxΛx,y

“ 0,

since πx is the only probability measure such that πxLx “ 0. It is also the only measure µ on
JnK with µp1q “ 1 (where 1 is the function always taking the value 1 on JnK) such that µLx “ 0.
So to get (3.11), it remains to check that πxΛx,yp1q “ 1. This is clear when x ď y, since Λx,y is
Markovian. It is in fact always true, as it can be directly checked on (3.1). A shorter proof is to
use again the intertwining relation (3.2): we get

LxΛx,y1 “ Λx,yLy1

“ 0.

So by irreducibility of Lx, the vector Λx,y1 is constant. Its first value is Λx,yp1, 1q “ 1. It follows
that Λx,y1 “ 1 and πxΛx,yp1q “ 1.

Note that the intertwining relation implies (in fact is equivalent to)

@ t ě 0, PxptqΛx,y “ Λx,yPyptq.

Taking into account the last assertion of Lemma 3.6, we write for any µ P PpJnKq,

πx ´ µPxptq “ πxΛx,yΛy,x ´ µPxptqΛx,yΛy,x

“ πyΛy,x ´ µΛx,yPyptqΛy,x

“ pπy ´ νPyptqqΛy,x (3.12)

where
ν B µΛx,y.

When x ď y, ν is a probability measure, otherwise it may only be a (signed) measure, but at
least it satisfies νp1q “ µpΛx,y1q “ µp1q “ 1. Consider the decomposition of ν into its non-negative
and non-positive parts: ν “ ν` ´ ν´. Recall that ν` and ν´ are two non-negative measures and
that }ν}tv “ ν`p1q ` ν´p1q. We have ν`p1q ´ ν´p1q “ 1 and by consequence,

πy ´ νPyptq “ ν`p1q

ˆ

πy ´
ν`

ν`p1q
Pyptq

˙

´ ν´p1q

ˆ

πy ´
ν´

ν´p1q
Pyptq

˙

.

It follows that

}πy ´ νPyptq}tv ď ν`p1q

›

›

›

›

πy ´
ν´

ν´p1q
Pyptq

›

›

›

›

tv

` ν´p1q

›

›

›

›

πy ´
ν`

ν`p1q
Pyptq

›

›

›

›

tv

ď ν`p1qEyptq ` ν´p1qEyptq
“ }ν}tv Eyptq

From the definition of the matrix norm ||| ¨ |||, for any measure ν on JnK and any JnKˆ JnK matrix
A, we have

}νA}tv ď |||A||| }ν}tv .

We deduce from (3.12)

}πx ´ µPxptq}tv ď |||Λy,x||| }πy ´ µPyptq}tv
ď |||Λy,x||| }ν}tv Eyptq.
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Recall that ν “ µΛx,y, so that

}ν}tv ď |||Λx,y||| }µ}tv
“ |||Λx,y|||.

Finally, we get
}πx ´ µPxptq}tv ď |||Λy,x||||||Λx,y|||Eyptq,

and taking the supremum over µ P PpJnKq,

Exptq ď |||Λy,x||||||Λx,y|||Eyptq.
The desired result follows from Lemma 3.7. �
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