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Abstract. We consider a stationary queueing process QX fed by a centered Gauss-
ian process X with stationary increments and variance function satisfying classical
regularity conditions. A criterion when, for a given function f , P(QX(t) > f(t) i.o.)
equals 0 or 1 is provided. Furthermore, an Erdös–Révész type law of the iterated
logarithm is proven for the last passage time ξ(t) = sup{s : 0 ≤ s ≤ t, QX(s) ≥
f(s)}. Both of these findings extend previously known results that were only avail-
able for the case when X is a fractional Brownian motion.

1. Introduction and Main Results

Let X = {X(t) : t ≥ 0} be a centered Gaussian process with stationary incre-
ments and almost surely continuous sample paths. Given c > 0, consider a reflected

(at 0) Gaussian process QX = {QX(t) : t ≥ 0} given by the following formula

QX(t) = X(t)− ct+max

(
QX(0),− inf

s∈[0,t]
(X(s)− cs)

)
. (1.1)

It is well known in queueing and risk theory, e.g., Reich (1958), that the unique
stationary solution of (1.1) has the following representation

QX(t) = sup
−∞<s≤t

(X(t)−X(s)− c(t− s)) .

Due to numerous application, QX has been studied in the literature under different
levels of generality, e.g., Norros (1994); Hüsler and Piterbarg (1999); Dębicki (2002);
Hüsler and Piterbarg (2004); Dieker (2005); Hashorva et al. (2013); Liu et al. (2015).

Received by the editors November 26th, 2017; accepted March 26th, 2018.

2010 Mathematics Subject Classification. Primary: 60F15, 60G70; Secondary: 60G22.

Key words and phrases. Extremes of Gaussian fields, storage processes, Gaussian processes,

law of the iterated logarithm.

453

http://alea.impa.br/english/index_v15.htm
https://doi.org/10.30757/ALEA.v15-19


454 K. M. Kosiński and P. Liu

Let f be any positive nondecreasing function on R. Kolmogorov’s zero-one law
implies that the process QX crosses the function f infinitely many times with
probability 0 or 1. Assume that P (QX(t) > f(t) i.o.) = 1 and define ξf = {ξf(t) :
t ≥ 0} as the last crossing time before time t, that is,

ξf (t) = sup{s : 0 ≤ s ≤ t, QX(s) ≥ f(s)}.

By the assumption on f it follows that

lim
t→∞

ξf (t) =∞ and lim sup
t→∞

(ξf (t)− t) = 0 a.s.

The purpose of this paper is to provide a tractable criterion to verify the zero-
one law as well as to give the asymptotic lower bound on ξf (t) − t. Erdös and
Révész (1990) investigated the lower bound in the case when QX is substituted by

Brownian motion W and f(t) =
√
2t log2 t with log2 t = log log t. Subsequently

similar results are known as Erdös–Révész type law of the iterated logarithm.
In the reminder of the paper we impose the following assumptions on variance

function σ2 of X :

AI: limt→∞ σ2(t)/t2α∞ = A∞, for some A∞ > 0, α∞ ∈ (0, 1). Further, σ2

is positive and twice continuously differentiable on (0,∞) with its first

derivative σ̇2 and second derivative σ̈2 being ultimately monotone at ∞.
AII: limt→0+ σ

2(t)/t2α0 = A0, for some A0 > 0, α0 ∈ (0, 1].

Assumptions AI-AII allow us to cover models that play important role in Gauss-
ian storage models, including both aggregations of fractional Brownian motions and
integrated stationary Gaussian processes; see, e.g., Norros (1994); Hüsler and Piter-
barg (1999); Dieker (2005); Dębicki (2002). In further analysis we tacitly assume
that the variance function σ2 of X satisfies both AI and AII. Our first contri-
bution is the following criterion; see, e.g., Watanabe (1970); Qualls and Watanabe
(1971) for similar results in the classical setting of non-reflected stationary Gaussian
process.

Theorem 1.1. For all positive and nondecreasing functions f on some interval

[T,∞), T > 0,

P (QX(t) > f(t) i.o.) = 0 or 1,

according as the integral

∫ ∞

T

ψ(f(u))

f(u)
du is finite or infinite,

where

ψ(u) := P

(
sup

t∈[0,u]

QX(t) > u

)
.

With ←−m being the generalized inverse of

m(u) = inf
t≥0

u(1 + ct)

σ(ut)
,
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define function fp by

fp(t) =
←−m
(√

2

(
log t+

(
γ − 1

2(1− α∞)
− p
)
log2 t

))
,

γ =

{
2(1−α∞)

α∞
α∞ ≥ 1/2

2(1+α0−2α∞)
α0

α∞ < 1/2
,

(1.2)

and a positive constant C as

C =
1

2
(Hηα∞

)2
√
A

B
ζα∞

(√
2A∞
A

) γ−1
1−α∞

,

where the remaining constants are defined in Equation 3.43. Since the exact asymp-
totics of ψ(u), as u grows large, were found in (Dębicki and Liu, 2016), c.f., Theo-
rem 3.1, it follows that

ψ(fp(u))

fp(u)
= C (u log1−p u)−1(1 + o(u)), as u→∞. (1.3)

Hence, by Theorem 1.1, P (QBH (t) > fp(t) i.o.) = 1 provided that p ≥ 0, which
leads to the following conclusion after deriving the exact asymptotics of fp.

Corollary 1.2.

lim sup
t→∞

QX(t)

(log t)
1

2(1−α∞)

=

(
2A∞
A2

) 1
2(1−α∞)

a.s.

Our second contribution is as follows.

Theorem 1.3. If p > 1, then

lim inf
t→∞

ξfp(t)− t
hp(t)

= −1 a.s.

If p ∈ (0, 1], then

lim inf
t→∞

log
(
ξfp(t)/t

)

hp(t)/t
= −1 a.s.,

where

hp(t) = p
fp(t)

ψ(fp(t))
log2 t.

Theorem 1.3 shows that for t big enough, there exists an s in [t− hp(t), t] such
that QX(s) ≥ fp(s) and that the length of the interval hp(t) is smallest possible.
Theorem 1.1 and Theorem 1.3 generalize the main results of Dębicki and Kosiński
(2017), which considered the special case when X ≡ BH is a fractional Brownian
motion with any Hurst parameter H ∈ (0, 1); see also (Shao, 1992; Dębicki and
Kosiński, 2018) for similar results for non-reflected Gaussian processes and Gaussian
order statistics. The organization of the rest of paper is as follows. The notation
and examples of Gaussian processes X that fall under our framework are displayed
in Section 2 followed by properties of the storage process QX in Section 3. Section 4
gives two useful tools and some auxiliary lemmas for the proof of the main results
which are presented in Section 5.
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2. Notation and Special Cases

We write f(u) ∼ g(u) if limu→∞ f(u)/g(u) = 1. By←−σ we denote the generalized
inverse function to σ, Ψ denotes the tail distribution function of the standard Nor-
mal random variable. Function f is ultimately monotone if there exists a constant
M > 0 such that f is monotone over (M,∞). For a centered continuous Gaussian
process with stationary increments V = {V (t) : t ∈ R}, such that V (0) = 0,

Cov(V (t), V (s)) =
σ2
V (t) + σ2

V (s)− σ2
V (t− s)

2
, (2.1)

we introduce the generalized Pickands’ constant on a compact set E ⊂ Rd as

HV (E) = E exp

(
sup
t∈E

(√
2V (t)− σ2

V (t)
))

.

Let

HV = lim
S→∞

HV ([0, S])

S
.

We refer to (Dębicki and Kosiński, 2014) for the finiteness ofHV (E) and to (Dębicki
et al., 2017; Dębicki and Hashorva, 2017) for the fact that HV ∈ (0,∞). Fur-
thermore, see (Dębicki, 2002; Dieker, 2005) for the analysis of other properties of
Pickands’-type constants.

Special cases. Fractional Brownian motion. Let BH = {BH(t) : t ≥ 0} denote fBm
with Hurst index H ∈ (0, 1] which is a centered Gaussian processes with continuous
sample paths and covariance function satisfying

Cov (BH(t), BH(s)) =
|s|2H + |t|2H − |t− s|2H

2
, s, t ≥ 0.

Direct calculations show that

σ2(t) = |t|2H , m(u) = Au1−H ,

A =

(
H

c(1−H)

)−H
1

1−H , B =

(
H

c(1−H)

)−H−2

H,

←−m(u) = A− 1
1−H u

1
1−H , fp(u) =

(
2

A2

(
log u+

(
2− 3H

2H(1−H)
− p
)
log2 u

)) 1
2(1−H)

,

hp(u) = pC−1u log1−p u log2 u, C =
1

2
(HBH )2

√
A

B

(√
2(τ∗)2H

1 + cτ∗

)(√
2

A

) 2−3H
H(1−H)

,

with τ∗ = H
c(1−H) . This coincides with (Dębicki and Kosiński, 2017, Theorem 1 and

2).

Short-range dependent Gaussian integrated processes. Let X(t) =
∫ t

0 Y (s) ds where
Y is a centered stationary Gaussian process with unit variance and correlation
function r(t) = Cov(Y (s + t), Y (s)), s ≥ 0, t ≥ 0. We say that X possesses short-
range dependence property if:

S1: r is a continuous function on [0,∞) such that, limt→∞ tr(t) = 0;
S2: r is decreasing over [0,∞) and

∫∞
0
r(t) dt = 1

G for some 0 < G <∞;

S3:
∫∞
0
s2|r(s)| ds <∞.
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The above assumptions go line by line the same as the assumptions in Dębicki
(2002) except a little modification. S1-S3 cover wide range of stationary Gaussian
processes such as the process with correlation function

r(t) = e−|t|α , α ∈ (0, 2].

In particular if r(t) = e−|t|, X is the so-called Ornstein-Uhlenbeck process. Appar-
ently, if S1-S3 are satisfied, then

σ2(t) = 2

∫ t

0

∫ s

0

r(v) dv ds

satisfies AI-AII. Note that

σ2(t) ∼ t2, as t→ 0, σ2(t) ∼ 2

G
t, as t→∞.

Dębicki (2002, Proposition 6.1) shows that

m2(u) = 2Gu+ 2G2G1 + o(1), as u→∞,
with G1 =

∫∞
0 tr(t) dt. This indicates that m(u) can be replaced by m̂(u) =√

2Gu+ 2G2G1 in Theorem 3.1 and Theorem 1.3. Under this replacement, we
have that

←−−−
m̂(u) =

u2

2G
−GG1, fp(t) =

1

G
(log t+ (1− p) log2 t)−GG1

and

hp(u) = pC−1u log1−p u log2 u, C =
2(Hη1/2

)2
(←−σ (

√
2

cG )
)−2

A3/2
√
BG

,

with η1/2 = cG√
2
X(←−σ (

√
2

cG )t), A = 2c1/2, and B = 1
2c

5/2.

3. Properties of the storage process

Before we present our auxiliary results, we need to introduce some notation and
state some properties of the supremum of the process QX as derived in (Piterbarg,
2001; Hüsler and Piterbarg, 2004). We begin with the relation

P

(
sup

t∈[0,T ]

QX(t) > u

)
= P


 sup

s∈[0,T/u]
τ≥0

Zu(s, τ) > m(u)


 , for any T > 0, (3.1)

where

Zu(s, τ) =
X(u(τ + s))−X(us)

u(1 + cτ)
m(u).

Note that Zu(s, τ) is a Gaussian field, stationary in s, but not in τ . The variance

σ2
u(τ) of Zu(s, τ) equals σ2(uτ)

(u(1+cτ))2m
2(u) and σu(τ) has a single maximum point at

τ(u) for u sufficiently large with limu→∞ τ(u) = τ∗, where

τ∗ =
α∞

c(1− α∞)
. (3.2)

Taylor’s formula shows that, for each u > 0 sufficiently large,

σu(τ) = σu(τ(u)) + σ̇u(τ(u))(τ − τ(u)) +
1

2
σ̈u(ξ)(τ − τ(u))2
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with ξ ∈ (τ, τ(u)). Noting that σu(τ(u)) = 1, for u sufficiently large, σ̇u(τ(u)) = 0
and for limu→∞ δu = 0

lim
u→∞

sup
|τ−τ(u)|<δu

∣∣∣∣
1

2
σ̈u(ξ) −

B

2A

∣∣∣∣ = 0,

we have

lim
u→∞

sup
τ 6=τ(u),|τ−τ(u)|<δu

∣∣∣∣∣
1− σu(τ)

B
2A (τ − τ(u))2

− 1

∣∣∣∣∣ = 0 (3.3)

with limu→∞ δu = 0, where

A =

(
α∞

c(1− α∞)

)−α∞ 1

1− α∞
, B =

(
α∞

c(1− α∞)

)−α∞−2

α∞. (3.4)

Let ru,u′ (s, τ, s′, τ ′) be the correlation function of Zu(s, τ) and Zu′(s′, τ ′). Then

ru,u′(s, τ, s′, τ ′) =
(
2σ(uτ)σ(u′τ ′)

)−1

·
(
− σ2(|us− u′s′ + uτ − u′τ ′|)

+ σ2(|us− u′s′ + uτ |) + σ2(|us− u′s′ − u′τ ′|)− σ2(|us− u′s′|)
)
.

Denote by

ru(s, τ, s
′, τ ′) = ru,u(s, τ, s

′, τ ′).

Then Lemma 5.4 in Dębicki and Liu (2016) gives that, with δu > 0 and limu→∞ δu =
0,

lim
u→∞

sup
(s,τ) 6=(s′,τ ′),|τ−τ(u)|,|τ ′−τ(u)|,|s−s′|≤δu

∣∣∣∣∣∣
1− ru(s, τ, s′, τ ′)

σ2(u|s−s′+τ−τ ′|)+σ2(u|s−s′|)
2σ2(uτ∗)

− 1

∣∣∣∣∣∣
= 0.

(3.5)

Now assume that

uτ + u′τ ′

|us− u′s′| <
1

2
, (3.6)

and without loss of generality, us > u′s′. Then Taylor’s formula gives that

ru,u′ (s, τ, s′, τ ′) =
−σ̈2(|us− u′s′ + v1 − v2|)uτu′τ ′

2σ(uτ)σ(u′τ ′)
,

with v1 ∈ (0, uτ), v2 ∈ (0, u′τ ′). Noting that by (3.6)

|us− u′s′ + v1 − v2| ≥ uτ + u′τ,

in light of (Bingham et al., 1987, Theorem 1.7.2) and by AI-AII we have

|us− u′s′ + v1 − v2|2σ̈2(|us− u′s′ + v1 − v2|)
σ2(|us− u′s′ + v1 − v2|)

→ 2α∞(2α∞ − 1), as uτ, u′τ ′ →∞.

Hence

ru,u′ (s, τ, s′, τ ′) ∼ −α∞(2α∞ − 1)

∣∣∣∣∣

√
uτu′τ ′

us− u′s′ + v1 − v2

∣∣∣∣∣

2λ

, as uτ, u′τ ′ →∞,

(3.7)
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where λ = 1− α∞ > 0. This implies that for any 0 < ǫ < 1
2 if

uτ + u′τ ′

|us− u′s′| < ǫ,

then, for uτ and uτ ′ both sufficiently large,

|ru,u′(s, τ, s′, τ ′)| ≤ (1− 2ǫ)2(α∞−1)

∣∣∣∣∣

√
uτu′τ ′

us− u′s′

∣∣∣∣∣

2λ

. (3.8)

Next we focus on the case when u ∼ u′, |s−s′| ≤M and |τ−τ0|, |τ ′−τ∗| ≤ δ(u, u′)
with τ∗ defined in (3.2) and limu,u′→∞ δ(u, u′) = 0. In light of AI and AII, noting
that σ2 is bounded over any compact interval, using uniform convergence theorem
in Bingham et al. (1987) we have that, for u ∼ u′,

lim
u,u′→∞

sup
|s−s′|≤M,|τ−τ∗|,|τ ′−τ∗|≤δ(u,u′)

∣∣∣∣
σ2(|us− u′s′ + uτ |) + σ2(|us− u′s′ − u′τ ′|)

σ2(u)

−|s− s′ + τ∗|2α∞ − |s− s′ − τ∗|2α∞
∣∣ = 0,

lim
u,u′→∞

sup
|s−s′|≤M,|τ−τ∗|,|τ ′−τ∗|≤δ(u,u′)

∣∣∣∣
σ2(|us− u′s′ + uτ − u′τ ′|) + σ2(|us− u′s′|)

σ2(u)

−2|s− s′|2α∞
∣∣ = 0,

lim
u,u′→∞

sup
|s−s′|≤M,|τ−τ∗|,|τ ′−τ∗|≤δ(u,u′)

∣∣∣∣
σ(uτ)σ(uτ ′)

σ2(u)
− |τ∗|2α∞

∣∣∣∣ = 0.

Hence for u ∼ u′

lim
u,u′→∞

sup
|s−s′|≤M,|τ−τ∗|,|τ ′−τ∗|≤δ(u,u′)

|ru,u′(s, τ, s′, τ ′)− g(s− s′)| = 0, (3.9)

with

g(t) =
|t+ τ∗|2α∞ + |t− τ∗|2α∞ − 2|t|2α∞

2(τ∗)2α∞
.

Note that g(0) = 1 and for any 0 < δ < 1, there exists 0 < cδ < 1/2 such that

inf
|t|<cδ

g(t) > δ, sup
|t|>δ

g(t) < 1− cδ. (3.10)

The proof of (3.10) is postponed to Appendix. Following (3.9) and (3.10) , we have
that with u ∼ u′, for u sufficiently large,

inf
|s−s′|<cδ,|τ−τ∗|,|τ ′−τ∗|≤δ(u,u′)

ru,u′(s, τ, s′, τ ′) > δ/2, (3.11)

sup
|s−s′|>δ,|τ−τ∗|,|τ ′−τ∗|≤δ(u,u′)

ru,u′(s, τ, s′, τ ′) < 1− cδ/2 < 1. (3.12)

3.1. Asymptotics. Let τ∗(u) = (logm(u))/m(u) and J(u) = {τ : |τ − τ(u)| ≤
τ∗(u)}. Due to the following lemma, while analyzing tail asymptotics of the supre-
mum of Zu, we can restrict the considered domain of (s, τ) to a strip J(u).

Lemma 3.1 (Dębicki and Liu (2016), Lemma 5.6 and Theorem 3.3). There exists

a positive constant C such that for any v, T > 0,

P

(
sup

(s,τ)∈[0,T ]×(J(u))c
Zu(s, τ) > m(u)

)
≤ CT uγ

m(u)
Ψ(m(u)) exp

(
− b
4
log2(m(u))

)
,

(3.13)
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where b = B/(2A). Furthermore, for any T > 0 such that, there exist c ∈ (0, 12 )

and H ′ ∈ (−γ/2, 0), such that uH
′
< T < exp(cm2(u)) for u sufficiently large,

P

(
sup

(s,τ)∈[0,T ]×J(u)

Zu(s, τ) > m(u)

)
= (Hηα∞

)2
√

2Aπ

B
ζα∞T

uγ

m(u)
Ψ(m(u))(1+o(1)),

(3.14)
where

ηα∞(t) =





Bα∞(t) α∞ > 1/2
1+cτ∗

√
2A∞τ∗X(←−σ (

√
2A∞τ∗

1+cτ∗ )t) α∞ = 1/2

Bα0(t) α∞ < 1/2

,

ζα∞ =





(√
2A∞(τ∗)2α∞

1+cτ∗

)−2/α∞

α∞ > 1/2
(←−σ

(√
2A∞τ∗

1+cτ∗

))−2

α∞ = 1/2
(√

2A∞(τ∗)2α∞
√
A0(1+cτ∗)

)−2/α0

α∞ < 1/2

,

with γ defined in (1.2) and τ∗ given by (3.2).

3.2. Discretization. For a fixed T, θ > 0 and some u > 0, let us define a discretiza-
tion of the set [0, T ]× J(u) as follows

sl = lq(u), 0 ≤ l ≤ L, L = [T/q(u)], q(u) = θ
∆(u)

u
, ∆(u) =←−σ

(√
2σ2(uτ∗)

u(1 + cτ∗)

)

τn=τ(u) + nq(u), 0 ≤ |n| ≤ N, N=[τ∗(u)/q(u)], El,n(u)=[sl, sl+1]× [τn, τn+1].

Along the similar lines as in (Hüsler and Piterbarg, 2004, Lemma 6) we get the
following lemma.

Lemma 3.2. There exist positive constants K1,K2, u0 > 0, such that, for any

θ = θ(u) > 0 with limu→∞ θ(u) = 0, u ≥ u0 and η ∈ (0,min(α0, α∞))

P


 max

0≤l≤L
0≤|n|≤N

Zu(sl, τn) ≤ m(u)− θη

m(u)
, sup
s∈[0,T ]
τ∈J(u)

Zu(s, τ) > m(u)




≤ K1
uγ

m(u)
Ψ(m(u))e−

θ−2H

K2

with H ∈ (0,min(α0, α∞)− η).

Proof : Conditioning on Zu(sl, τn) = m(u)− θη

m(u) , we have for u sufficiently large

P

(
Zu(sl, τn) ≤ m(u)− θη

m(u)
, sup
(s,τ)∈El,n(u)

Zu(s, τ) > m(u)

)

=

∫ ∞

θη

1√
2πm(u)σu(τn)

e
− (m(u)−y/m(u))2

2σ2
u(τn)

× P

(
sup

(s,τ)∈El,n(u)

Zu(s, τ) > m(u)
∣∣∣Zu(sl, τn) = m(u)− y

m(u)

)
dy
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≤ K√
2πm(u)

e
− m2(u)

2σ2
u(τn)

∫ ∞

θη

e2y

× P

(
sup

(s,τ)∈El,n(u)

Zu(s, τ)−m(u) > 0
∣∣∣Zu(sl, τn) = m(u)− y

m(u)

)
dy.

Moreover,

Zu(s, τ) −m(u)
∣∣∣Zu(sl, τn) = m(u)− y

m(u)

d
= Yu(s, τ) + h(u, y),

holds for (s, τ) ∈ El,n(u), where

Yu(s, τ) = Zu(s, τ) − ru(s, τ, sl, τn)
σu(τ)

σu(τn)
Zu(sl, τn),

h(u, y) = ru(s, τ, sl, τn)
σu(τ)

σu(τn)

(
m(u)− y

m(u)

)
−m(u).

Taylor’s formula gives that

m(u)h(u, y) = −m2(u)(1− ru(s, τ, sl, τn))−m2(u)ru(s, τ, sl, τn)

(
1− σu(τ)

σu(τn)

)

− ru(s, τ, sl, τn)
σu(τ)

σu(τn)
y

≤ −m2(u)ru(s, τ, sl, τn)
σ̇u(τ)(τn − τ) + (1/2)σ̈u(v)(τ − τn)2

σu(τn)

− ru(s, τ, sl, τn)
σu(τ)

σu(τn)
y,

with v ∈ (τn, τ). Using the fact that σ̇u(τ(u)) = 0 and supτ∈J(u) |σ̈u(τ)| ≤ 2B
A for

u sufficiently large, by Taylor’s formula, we have

m2(u)|σ̇u(τ)(τn − τ)| = m2(u)|(σ̇u(τ) − σ̇u(τ(u)))(τn − τ)|
= m2(u)|τn − τ ||σ̈(v1)(τ(u) − τ)|

≤ 2B

A
m2(u)q(u)τ∗(u)

= θ
2B

A

m(u)∆(u)

u
logm(u),

with v1 ∈ (τ, τ(u)). Note that by AI-AII

m(u)∆(u)

u
logm(u) ∼ Quv2 log u, with v2 =

{
2− α∞ − 1/α∞ α∞ ≥ 1/2

2α∞−1
α0

− α∞ α∞ < 1/2
.

Since v2 < 0 for all α∞ ∈ (0, 1], then

m2(u)|σ̇u(τ)(τn − τ)| = o(θ), u→∞.

m2(u)|σ̈u(θ)(τ − τn)2| ≤ K
(
m(u)∆(u)

u

)2

θ2 = o(θ2).

Due to the fact that y ≥ θη with 0 < η < 1, we have

h(u, y) ≤ −y(1 + o(1)).



462 K. M. Kosiński and P. Liu

Consequently, for u sufficiently large

P

(
sup

(s,τ)∈El,n(u)

Zu(s, τ) −m(u) > 0
∣∣∣Zu(sl, τn) = m(u)− y

m(u)

)

≤ P

(
sup

(s,τ)∈[0,1]2
m(u)

Yu(sl + qs, τn + qτ)

σu(τn + qτ)
>

y

supτ∈[0,1] σu(τn + qτ)
(1 + o(1))

)

≤ P

(
sup

(s,τ)∈[0,1]2
m(u)

Yu(sl + qs, τn + qτ)

σu(τn + qτ)
>
y

2

)

By (3.5) for u large enough

m2(u)Var

(
Yu(sl + qs, τn + qτ)

σu(τn + qτ)
− Yu(sl + qs′, τn + qτ ′)

σu(τn + qτ ′)

)

≤ 8m2(u)(1− ru(sl + qs, τn + qτ, sl + qs′, τn + qτ ′))

≤ 16m2(u)
σ2(uq(u)|s− s′|) + σ2(uq(u)|s+ τ − s′ − τ ′|)

2σ2(uτ∗)

≤ Kσ2(∆(u)θ|s − s′|) + σ2(∆(u)θ|s + τ − s′ − τ ′|)
σ2(∆(u))

≤ K
(
h(∆(u)θ|s− s′|)

h(∆(u))
θ2η

′ |s− s′|2η′

+
h(∆(u)θ|s+ τ − s′ − τ ′|)

h(∆(u))
θ2η

′ |s+ τ − s′ − τ ′|2η′
)

≤ K
(
h(∆(u)θ|s− s′|)

h(∆(u))
+
h(∆(u)θ|s+ τ − s′ − τ ′|)

h(∆(u))

)
θ2η

′

(|s− s′|2η′

+ |τ − τ ′|2η′

),

with s, s′, τ, τ ′ ∈ [0, 1],

where h(t) = σ2(t)

t2η′ and η′ ∈ (η,min(α0, α∞)). Then it follows from AI and AII

that h(t) > 0, t > 0 is a regularly varying function at both 0 and ∞ with indices
2(α0 − η′) > 0 and 2(α∞ − η′) > 0 respectively; see Bingham et al. (1987) for
the definition and properties of regularly varying functions. Next we focus on the

boundedness of sups,s′∈[0,1]
h(∆(u)θ|s−s′|)

h(∆(u)) . If limu→∞ ∆(u) = ∞, noting that h is

bounded over any compact interval, then uniform convergence theorem in Bingham
et al. (1987) gives that

lim
u→∞

sup
s,s′∈[0,1]

∣∣∣∣
h(∆(u)θ|s− s′|)

h(∆(u))
− (θ|s− s′|)2(α∞−η′)

∣∣∣∣ = 0,

implying that there exists K1 > 0 such that for u large enough

sup
s,s′∈[0,1]

h(∆(u)θ|s− s′|)
h(∆(u))

< K1.

For the case limu→∞ ∆(u) = 0, uniform convergence theorem in Bingham et al.
(1987) can similarly show that the above argument holds. For limu→∞ ∆(u) ∈
(0,∞), it is obvious that

lim
u→∞

sup
s,s′∈[0,1]

h(∆(u)θ|s − s′|) = 0, lim
u→∞

h(∆(u)) ∈ (0,∞).
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Thus the boundedness of sups,s′∈[0,1]
h(∆(u)θ|s−s′|)

h(∆(u)) also holds. The boundedness of

sups,s′,τ,τ ′∈[0,1]
h(∆(u)θ|s+τ−s′−τ ′|)

h(∆(u)) can be given similarly. Thus we have that

m2(u)Var

(
Yu(sl + qs, τn + qτ)

σu(τn + qτ)
− Yu(sl + qs′, τn + qτ ′)

σu(τn + qτ ′)

)

≤ Kθ2η′

(|s− s′|2η′

+ |τ − τ ′|2η′

), s, s′, τ, τ ′ ∈ [0, 1],

with η′ ∈ (η,min(α0, α∞)). Similarly

sup
s,τ∈[0,1]

m2(u)Var

(
Yu(sl + qs, τn + qτ)

σu(τn + qτ)

)
≤ Kθ2η′

.

Hence in light of Piterbarg inequality (Piterbarg, 1996, Theorem 8.1 or Dębicki and
Liu, 2016, Lemma 5.1), we have for u sufficiently large

P

(
sup

(s,τ)∈[0,1]2
m(u)

Yu(sl + qs, τn + qτ)

σu(τn + qτ)
>
y

2

)

P

(
sup

(s,τ)∈[0,1]2
θ−η′

m(u)
Yu(sl + qs, τn + qτ)

σu(τn + qτ)
>
y

2
θ−η′

)

≤ K1(yθ
−η′

)2/η
′−1e−

(yθ−η′
)2

K .

Consequently,

P

(
Zu(sl, τn) ≤ m(u)− θη

m(u)
, sup
(s,τ)∈El,n(u)

Zu(s, τ) > m(u)

)

≤ K1√
2πm(u)

e
− m2(u)

2σ2
u(τn)

∫ ∞

θη

e2y(yθ−η′

)2/η
′−1e−

(yθ−η′
)2

K dy

≤ K1√
2πm(u)

e
− m2(u)

2σ2
u(τn) θη

′
∫ ∞

θη−η′
e2yθ

η′

y2/η
′−1e−

y2

K dy

≤ K1√
2πm(u)

e
− m2(u)

2σ2
u(τn) e

− θ2(η−η′)

K2 .

Using the above inequality and (3.3), we have that

P


 max

0≤l≤L
0≤|n|≤N

Zu(sl, τn) ≤ m(u)− θη

m(u)
, sup
(s,τ)∈[0,T ]×J(u)

Zu(s, τ) > m(u)




≤
∑

0≤l≤L,|n|≤N

P

(
Zu(sl, τn) ≤ m(u)− θη

m(u)
, sup
(s,τ)∈El,n(u)

Zu(s, τ) > m(u)

)

≤
∑

0≤l≤L,|n|≤N

K1√
2πm(u)

e
− m2(u)

2σ2
u(τn) e−

θ2(η−η′)

K2

≤ L K1√
2πm(u)

e−
θ2(η−η′)

K2

∑

|n|≤N

e−
m2(u)(1+B(nq)2/(4A))

2

≤ K1

(
u

m(u)∆(u)

)2

e−
m2(u)

2 θ−2e
− θ2(η−η′)

K2
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≤ K1
uγ

m(u)
Ψ(m(u))e−

θ2(η−η′)

K2 .

This completes the proof. �

Finally, by following the same arguments as in Dębicki and Liu (2016, Theorems
3.3) with the supremum functional substituted by its discrete counterpart, the
maximum, we state the following result. Note that the asymptotic result below is
a discrete version of (3.14) in Theorem 3.1.

Lemma 3.3. For any T, θ > 0, as u→∞,

P


 max

0≤l≤L
0≤|n|≤N

Zu(sl, τn) > m(u)


 = (Hθ

ηα∞
)2
√

2Aπ

B
ζα∞T

uγ

m(u)
Ψ(m(u))(1 + o(1)),

where Hθ
ηα∞

= limS→∞ S−1E exp
(
supt∈θZ∩[0,S]

(√
2ηα∞(t)− Var(ηα∞(t))

))
.

By the monotone convergence theorem, it follows that Hθ
ηα∞
→ Hηα∞ as θ → 0,

since Hηα∞ is a positive, finite constant and ηα∞ has almost surely continuous
sample paths. Consequently, when the discretization parameter θ decreases to zero
so that the number of discretization points grows to infinity, we recover (3.14).

4. Auxiliary Lemmas

We begin with some auxiliary lemmas that are later needed in the proofs. The
first lemma is (Leadbetter et al., 1983, Theorem 4.2.1).

Lemma 4.1 (Berman’s inequality). Suppose ξ1, . . . , ξn are standard normal vari-

ables with covariance matrix Λ1 = (Λ1
i,j) and η1, . . . , ηn similarly with covariance

matrix Λ0 = (Λ0
i,j). Let ρi,j = max(|Λ1

i,j |, |Λ0
i,j |) and let u1, . . . , un be real numbers.

Then,

P




n⋂

j=1

{ξj ≤ uj}


− P




n⋂

j=1

{ηj ≤ uj}




≤ 1

2π

∑

1≤i<j≤n

(
Λ1
i,j − Λ0

i,j

)+
(1− ρ2i,j)−

1
2 exp

(
−

u2i + u2j
2(1 + ρi,j)

)
.

The following lemma is a general form of the Borel-Cantelli lemma; cf. (Spitzer,
1964).

Lemma 4.2 (Borel-Cantelli lemma). Consider a sequence of event {Ek}∞k=0. If

∞∑

k=0

P (Ek) <∞,

then P (En i.o.) = 0. Whereas, if

∞∑

k=0

P (Ek) =∞ and lim inf
n→∞

∑
1≤k 6=t≤n P (EkEt)

(
∑n

k=1 P (Ek))
2 ≤ 1,

then P (En i.o.) = 1.



Sample path properties of reflected Gaussian processes 465

Lemma 4.3. For any ε ∈ (0, 1), there exist positive constants K and ρ depending

only on ε, α0, α∞ and p such that

P

(
sup

S<t≤T

QX(t)

fp(t)
≤ 1

)

≤ exp

(
−(1− ε)

∫ T

S+fp(S)

1

fp(u)
P

(
sup

t∈[0,fp(u)]

QX(t) > fp(u)

)
du

)
+KS−ρ,

for any T − fp(S) ≥ S ≥ K, with fp(T )/fp(S) ≤ C and C being some universal

positive constant.

Proof : Let ε ∈ (0, 1) be some positive constant. For the remainder of the proof
let K and ρ be two positive constants depending only on ε, α0, α∞ and p that may
differ from line to line. For any k ≥ 0 put s0 = S, y0 = fp(s0), t0 = s0 + y0,
x0 = fp(t0) and

sk = tk−1 + εxk−1, yk = fp(sk), tk = sk + yk, xk = fp(tk),

Ik = (sk, tk], Ĩk =
Ik
xk

= (s̃k, t̃k], |Ĩk| =
yk
xk
.

From this construction, it is easy to see that the intervals Ik are disjoint. Further-
more, δ(Ik, Ik+1) = εxk, and 1− ε ≤ yk/xk ≤ 1, for any k ≥ 0 and sufficiently large
S. Note that, for any k ≥ 0, |Ik| ≥ fp(S), therefore if T (S, ε) is the smallest number
of intervals {Ik} needed to cover [S, T ], then T (S, ε) ≤ [(T − S)/(fp(S)(1 + ε))].
Moreover, since fp(T )/fp(S) is bounded by the constant C > 0 not depending on
S and ε, it follows that, xk/xt ≤ C for any 0 ≤ t < k ≤ T (S, ε).

Now let us introduce a discretization of the set Ĩk × J(xk) as in Subsection 3.2.

That is, for some θ = ∆(S)
S , define grid points

sk,l = s̃k + lqk, 0 ≤ l ≤ Lk, Lk = [(1− ε)/qk], qk = θ
∆(xk)

xk
,

τk,n = τ(xk) + nqk, 0 ≤ |n| ≤ Nk, Nk = [τ∗(xk)/qk].

Since fp is an increasing function, it easily follows that,

P

(
sup

S<t≤T

QX(t)

fp(t)
≤ 1

)
≤ P




T (S,ε)⋂

k=0

{
sup
t∈Ik

QX(t) ≤ xk
}


≤ P




T (S,ε)⋂

k=0





sup
s∈Ik/xk

τ∈J(xk)

Zxk
(s, τ) ≤ m(xk)








≤ P




T (S,ε)⋂

k=0



 max

0≤l≤Lk

0≤|n|≤Nk

Zxk
(sk,l, τk,n) ≤ m(xk)








≤
T (S,ε)∏

k=0

P


 max

0≤l≤Lk

0≤|n|≤Nk

Zxk
(sk,l, τk,n) ≤ m(xk)


+

∑

0≤t<k≤T (S,ε)

Ck,t =: P1 + P2,



466 K. M. Kosiński and P. Liu

where the last inequality follows from Berman’s inequality with

Ck,t =
∑

0≤l≤Lk
0≤p≤Lt

∑

|n|≤Nk

|m|≤Nt

|rxk,xt(sk,l, τk,n, st,p, τt,m)|√
1− r2xk,xt

(sk,l, τk,n, st,p, τt,m)

× exp

(
−

1
2 (m

2(xk) +m2(xt))

1 + |rxk,xt(sk,l, τk,n, st,p, τt,m)|

)
.

Estimation of P1:

Since for any u the process Zu is stationary in the first variable, from Theorem 3.3

we have that, as S →∞ (noting that θ = ∆(S)
S → 0)

P


 max

0≤l≤Lk

0≤|n|≤Nk

Zxk
(sk,l, τk,n) > m(xk)


 ∼ P

(
sup

(s,τ)∈Ĩk×J(xk)

Zxk
(s, τ) > m(xk)

)

uniformly with respect to 0 ≤ k ≤ T (S, ε). Hence for any ε ∈ (0, 1), sufficiently
large S and small θ,

P1 ≤ exp


−

T (S,ε)∑

k=0

P


 max

0≤l≤Lk

0≤|n|≤Nk

Zxk
(sk,l, τk,n) > m(xk)






≤ exp


−(1− ε

8
)

T (S,ε)∑

k=0

P

(
sup

(s,τ)∈Ĩk×J(xk)

Zxk
(s, τ) > m(xk)

)


Then, by (3.1) combined with Theorem 3.1,

P1 ≤ exp


−(1−

ε

4
)

T (S,ε)∑

k=0

P


sup

s∈Ĩk
τ≥0

Zxk
(s, τ) > m(xk)







= exp


−(1− ε

4
)

T (S,ε)∑

k=0

P


 sup

t∈[0,
yk
xk

fp(tk)]

QX(t) > fp(tk)






≤ exp


−(1− ε

2
)

T (S,ε)∑

k=0

P

(
sup

t∈[0,fp(tk)]

QX(t) > fp(tk)

)
fp(sk)

fp(tk)




≤ exp

(
−(1− ε)

∫ T

S+fp(S)

1

fp(u)
P

(
sup

t∈[0,fp(u)]

QX(t) > fp(u)

)
du

)
.

Estimation of P2:

For any 0 ≤ t < k ≤ T (S, ε), 0 ≤ l ≤ Lk, 0 ≤ p ≤ Lt, we have

xksk,l − xtst,p = (sk + xklqk)− (st + xtpqt)

=

k−1∑

i=t

(yi + εxi) + xklqk − xtpqt ≥
k−1∑

i=t

(yi + εxi)− yt

≥
k−1∑

i=t+1

yi.
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Recall that λ = 1−α∞. Hence we can find s0 > 2 such that for S sufficiently large,
k − t ≥ 2s0, 0 ≤ l ≤ Lk, 0 ≤ p ≤ Lt, |n| ≤ Nk and |m| ≤ Nt

xkτk,n + xtτt,m
|xksk,l − xtst,p|

≤ xk(τk,n + τt,m)
∑k−1

i=t+1 yi
< 1/3,

which applied to (3.8) indicates that for k − t ≥ s0 and S sufficiently large,

r∗k,t : = sup
0≤l≤Lk,0≤p≤Lt

|n|≤Nk,|m|≤Nt

|rxk,xt(sk,l, τk,n, st,p, τt,m)|

≤ 32(1−α∞) sup
0≤l≤Lk,0≤p≤Lt

|n|≤Nk,|m|≤Nt

∣∣∣∣∣

√
xkτk,nxtτt,m
∑k−1

i=t+1 yi

∣∣∣∣∣

2λ

≤ 32(1−α∞) sup
0≤l≤Lk,0≤p≤Lt

|n|≤Nk,|m|≤Nt

∣∣∣∣∣
xkτk,n∑k−1
i=t+1 yi

∣∣∣∣∣

λ ∣∣∣∣∣
xtτt,m∑k−1
i=t+1 yi

∣∣∣∣∣

λ

≤ K
∣∣∣∣∣

xt∑k−1
i=t+1 yi

∣∣∣∣∣

λ

≤ K(k − t)−λ ≤ λ

4
. (4.1)

For 1 ≤ k− t ≤ s0, it follows that xk ∼ xt, τk,l → τ∗ and τt,p → τ∗ as S →∞, and
sk,l − st,p ≥ ǫxt/xk > ǫ/2 for S sufficiently large. Therefore, by (3.12) there exists
a positive constant ζ ∈ (0, 1) depending only on ε such that for S sufficiently large

sup
1≤k−t≤s0

r∗k,t = sup
1≤k−t≤s0

sup
0≤l≤Lk,0≤p≤Lt

|n|≤Nk,|m|≤Nt

|rxk,xt(sk,l, τk,n, st,p, τt,m)| ≤ ζ < 1. (4.2)

Finally, note that; c.f., (1.2),

Nk ≤ Lk ≤
2(1− ε)xk
θ∆(xk)

≤ Kx2γk ≤ K(log tk)
γ

(1−α∞) ,

exp

(
−m

2(xk)

2

)
=

(log tk)
p− γ−1

2(1−α∞)

tk
,

so that

P2 ≤
4√

1− ζ2
∑

0≤t<k≤T (S,ε)

LkLtNkNtr
∗
k,t exp

(
−m

2(xk) +m2(xt)

2(1 + r∗k,t)

)

≤ K




∑

0<k−t≤s0
0≤t<k≤T (S,ε)

+
∑

k−t>s0
0≤t<k≤T (S,ε)


 (·)

≤ K
( ∞∑

k=0

x8γk exp

(
−m

2(xk)

1 + ζ

)

+
∑

k−t>s0
0≤t<k≤T (S,ε)

(xkxt)
4γ(k − t)−λ exp

(
−m

2(xk) +m2(xt)

2(1 + λ
4 )

))
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≤ K




∞∑

k=0

t
− 2

1+
√

ζ

k +
∑

k−t>s0
0≤t<k≤T (S,ε)

t
− 1

1+λ
2

k t
− 1

1+λ
2

t (k − t)−λ




≤ K




∞∑

k=[S]

k
− 2

1+
√

ζ +
∑

[S]≤t<k≤∞
k
− 1

1+λ
2 t

− 1

1+λ
2 (k − t)−λ




≤ KS−ρ,

where the last inequality follows from basic algebra. �

Let S > 0 be any fixed number, a0 = S, y0 = fp(a0) and b0 = a0+ y0. For i > 0,
define

ai = bi−1, yi = fp(ai), bi = ai + yi, Mi = (ai, bi], M̃i =
Mi

yi
= (ãi, b̃i].

(4.3)
From this construction, it is easy to see that the intervalsMi are disjoint, ∪ij=0Mj =

(S, bi], and |M̃i| = 1. Now let us introduce a discretization of the set M̃i× J(yi) as

in Subsection 3.2. That is, for θ = ∆(S)
S , define grid points

si,l = ãi + lqi, 0 ≤ l ≤ Li, Li = [1/qi], qi = θ
∆(yi)

yi
, (4.4)

τi,n = τ(yi) + nqi, 0 ≤ |n| ≤ Ni, Ni = [τ∗(yi)/qi].

With the above notation, we have the following lemma.

Lemma 4.4. For any ε ∈ (0, 1), there exists positive constants K and ρ depending

only on ε, α0, α∞ and p such that, with θi = (m(yi))
−4/α̂, where α̂ = min(α0, α∞),

P




[(T−S)/fp(S)]⋂

i=0



 max

0≤l≤Li

0≤|n|≤Ni

Zyi(si,l, τi,n) ≤ m(yi)−
θ

α̂
2

i

m(yi)








≥ 1

4
exp

(
−(1 + ε)

∫ T

S

1

fp(u)
P

(
sup

t∈[0,fp(u)]

QX(t) > fp(u)

)
du

)
−KS−ρ,

for any T − fp(S) ≥ S ≥ K, with fp(T )/fp(S) ≤ C and C being some universal

positive constant.

Proof : Put

m̂(yi) = m(yi)−
θ

α̂
2

i

m(yi)
, I = [(T − S)/fp(S)].

Similarly as in the proof of Theorem 4.3 we find that Berman’s inequality implies

P




I⋂

i=0



 max

0≤l≤Li

0≤|n|≤Ni

Zyi(si,l, τi,n) ≤ m(yi)−
θ

α̂
2
i

m(yi)








≥
I∏

i=0

P


 max

0≤l≤Li

0≤|n|≤Ni

Zyi(si,l, τi,n) ≤ m(yi)−
θ

α̂
2

i

m(yi)


−

∑

0≤i<j≤I

Di,j =: P ′
1 + P ′

2,
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where

Di,j =
1

2π

∑

0≤l≤Li
0≤p≤Lj

∑

|n|≤Ni

|m|≤Nj

(r̃yi,yj(si,l, τi,n, sj,p, τj,m))+√
1− r̃2yi,yj

(si,l, τi,n, sj,p, τj,m)

× exp

(
−

1
2 (m̂

2(yi) + m̂2(yj))

1 + |r̃yi,yj (si,l, τi,n, sj,p, τj,m)|

)
,

with

r̃yi,yj (si,l, τi,n, sj,p, τj,m) = −ryi,yj(si,l, τi,n, sj,p, τj,m).

Estimation of P ′
1:

By Theorem 3.1 the correction term θ
α̂/2
i /m(yi) does not change the order of

asymptotics of the tail of Zyi . Furthermore, the tail asymptotics of the supremum

on the strip (s, τ) ∈ M̃i × J(yi) are of the same order if τ ≥ 0. Hence, for every
ε > 0,

P ′
1 ≥

1

4
exp


−

I∑

i=0

P


 max

0≤l≤Li

0≤|n|≤Ni

Zyi(si,l, τi,n) > m̂(yi)






≥ 1

4
exp


−

I∑

i=0

P


 sup

s∈M̃i

τ∈J(yi)

Zyi(s, τ) > m(yi)−
θ

α̂
2

i

m(yi)







≥ 1

4
exp


−(1 + ε)

I∑

i=0

P


 sup

s∈M̃i
τ≥0

Zyi(s, τ) > m(yi)







=
1

4
exp

(
−(1 + ε)

I∑

i=0

P

(
sup

t∈[0,fp(ai)]

QX(t) > fp(ai)

))

≥ 1

4
exp

(
−(1 + ε)

∫ T

S

1

fp(u)
P

(
sup

t∈[0,fp(u)]

QX(t) > fp(u)

)
du

)
,

provided that S is sufficiently large along the same lines as the estimation of P1 in
Theorem 4.3.

Estimation of P ′
2:

Clearly, for j ≥ i + 2, and any 0 ≤ l ≤ Li, 0 ≤ p ≤ Lj; c.f. (4.3),

yjsj,p − yisi,l = aj + yjpqj − (ai + yilqi) ≥
j−1∑

k=i+1

yk.

Hence there exists s0 ≥ 2 such that for j− i ≥ s0, 0 ≤ l ≤ Li, 0 ≤ p ≤ Lj , |n| ≤ Ni,
|m| ≤ Nj and S sufficiently large

yjτj,m + yiτi,n
|yjsj,p − yisi,l|

≤ yj(τj,m + τi,n)∑j−1
k=i+1 yk

≤ 1

3
.
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Analogously as the derivation of (4.1), by (3.8) for j − i ≥ s0 and S sufficiently
large

r∗i,j := sup
0≤l≤Li,0≤p≤Lj

|n|≤Ni,|m|≤Nj

|r̃yi,yj (si,l, τi,n, sj,p, τj,m)| ≤ K(k − t)−λ ≤ λ

4
,

where λ = 1 − α∞. For 1 ≤ j − i ≤ s0, it follows that yi ∼ yj , τi,n → τ∗ and
τj,m → τ∗ as S → ∞, and si,l − sj,p ≥ yi+1/yj >

1
2 for 2 ≤ j − i ≤ s0 and S

sufficiently large. Therefore, by (3.12) there exists a positive constant ζ1 ∈ (0, 1)
depending only on ε such that for S sufficiently large

sup
2≤j−i≤s0

r∗i,j = sup
2≤j−i≤s0

sup
0≤l≤Li,0≤p≤Lj

|n|≤Ni,|m|≤Nj

|ryi,yj(si,l, τi,n, sj,p, τj,m)| ≤ ζ1. (4.5)

Moreover, by (3.11) there exist positive constants δ ∈ (0, 1) and cδ ∈ (0, 12 ),
M < 1, such that, for sufficiently large S,

inf
|yi−yj |<cδ,|τ−τ∗|,|τ ′−τ∗|≤M

ryi,yj (s, τ, s
′, τ ′) >

δ

2
.

Hence for sufficiently large S and 0 ≤ l ≤ Li, 0 ≤ p ≤ Lj, |n| ≤ Ni, |m| ≤ Nj

(r̃yi,yj (si,l, τi,n, sj,p, τj,m))+ = 0, if j = i+ 1, |si,l − sj,p| ≤ cδ. (4.6)

By (3.12) there exits ζ2 ∈ (0, 1) such that for S sufficiently large and 0 ≤ l ≤ Li,
0 ≤ p ≤ Lj , |n| ≤ Ni, |m| ≤ Nj

|r̃yi,yj(si,l, τi,n, sj,p, τj,m)| ≤ ζ2, if j = i+ 1, |si,l − sj,p| ≥ cδ. (4.7)

Let ζ = max(ζ1, ζ2). Therefore, by (4.2)–(4.7) we obtain

P ′
2 ≤

∑

0≤i≤I−1
1≤j−i≤s0

∑

0≤l≤Li
0≤p≤Lj

∑

|n|≤Ni

|m|≤Nj

1√
1− ζ exp

(
−

1
2 (m̂

2(yi) + m̂2(yj))

1 + ζ

)

+
∑

0≤i≤I−2
i+s0≤j≤I

∑

0≤l≤Li
0≤p≤Lj

∑

|n|≤Ni

|m|≤Nj

r∗i,j√
1− r∗i,j

exp

(
−

1
2 (m̂

2(yi) + m̂2(yj))

1 + r∗i,j

)
.

Completely similar to the estimation of P2 in the proof of Theorem 4.3, we can
arrive that there exist positive constants K and ρ such that, for sufficiently large S,

P ′
2 ≤ KS−ρ.

�

The next lemma is a straightforward modification of (Watanabe, 1970, Lemma
3.1 and Lemma 4.1), see also (Qualls and Watanabe, 1971, Lemma 1.4).

Lemma 4.5. It is enough to proof Theorem 1.1 for any nondecreasing function f
such that,

←−m
(√

log t
)
≤ f(t) ≤ ←−m

(√
3 log t

)
, (4.8)

for all t ≥ T , and T large enough.
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5. Proof of the main results

Proof of Theorem 1.1: Note that the case If <∞ is straightforward and does
not need any additional knowledge on the process QX apart from the property
of stationarity. Indeed, consider the sequence of intervals Mi as in Theorem 4.4.
Then, for any ε > 0 and sufficiently large T ,

∞∑

k=[T ]+1

P

(
sup
t∈Mk

QX(t) > f(ak)

)
=

∞∑

k=[T ]

P

(
sup

t∈[0,f(bk)]

QX(t) > f(bk)

)
≤ If <∞,

and the Borel-Cantelli lemma completes this part of the proof since f is an increas-
ing function.

Now let f be an increasing function such that If ≡ ∞. With the same notation
as in Theorem 4.3 with f instead of fp, we find that, for any S, ε, θ > 0,

P (QX(s) > f(s) i.o.) ≥ P

({
sup
t∈Ik

QX(t) > f(tk)

}
i.o.

)

≥ P





 max

0≤l≤Lk

0≤|n|≤Nk

Zxk
(sk,l, τk,n) > m(xk)



 i.o.


 .

Let

Ek =



 max

0≤l≤Lk

0≤|n|≤Nk

Zxk
(sk,l, τk,n) ≤ m(xk)



 .

For sufficiently large S and sufficiently small θ; c.f., estimation of P1, we get

∞∑

k=0

P (Ec
k) ≥ (1− ε)

∫ ∞

S+f(S)

1

f(u)
P

(
sup

t∈[0,f(u)]

QX(t) > f(u)

)
du =∞. (5.1)

Note that

1− P (Ec
i i.o.) = lim

m→∞

∞∏

k=m

P (Ek) + lim
m→∞

(
P

( ∞⋂

k=m

Ek

)
−

∞∏

k=m

P (Ek)

)
.

The first limit is zero as a consequence of (5.1), and the second limit will be zero
because of the asymptotic independence of the events Ek. Indeed, there exist
positive constantsK and ρ, depending only on α0, α∞, ε, λ, such that for any n > m,

Am,n =

∣∣∣∣∣P
(

n⋂

k=m

Ek

)
−

n∏

k=m

P (Ek)

∣∣∣∣∣ ≤ K(S +m)−ρ,

by the same calculations as in the estimate of P2 in Theorem 4.3 after realizing
that, by Theorem 4.5, we might restrict ourselves to the case when (4.8) holds.
Therefore P (Ec

i i.o.) = 1, which finishes the proof. �

Proof of Theorem 1.3:

Let ξp ≡ ξfp for short.

Step 1. Let p > 1, then, for every ε ∈ (0, 14 ),

lim inf
t→∞

ξp(t)− t
hp(t)

≥ −(1 + 2ε) a.s.
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Proof : Let {Tk : k ≥ 1} be a sequence such that Tk → ∞, as k → ∞. Put

Sk = Tk − (1 + 2ε)hp(Tk). Since hp(t) = O(t log1−p t log2 t), then, for p > 1,
Sk ∼ Tk, as k →∞, and from Theorem 4.3 it follows that

P

(ξp(Tk)− Tk
hp(Tk)

≤ −(1 + 2ε)2
)
= P (ξp(Tk) ≤ Sk) = P

(
sup

Sk<t≤Tk

QX(t)

fp(t)
< 1

)

≤ exp

(
−(1− ε)

∫ Tk

Sk+fp(Sk)

1

fp(u)
P

(
sup

t∈[0,fp(u)]

QX(t) > fp(u)

)
du

)
+ 2KT−ρ

k .

Moreover, as k →∞,
∫ Tk

Sk+fp(Sk)

1

fp(u)
P

(
sup

t∈[0,fp(u)]

QX(t) > fp(u)

)
du

∼ (1 + 2ε)hp(Tk)
1

fp(Tk)
P

(
sup

t∈[0,fp(Tk)]

QX(t) > fp(Tk)

)
= (1 + 2ε)p log2 Tk.

(5.2)

Now take Tk = exp(k1/p). Then,

∞∑

k=1

P (ξp(Tk) ≤ Sk) ≤ 2K
∞∑

k=1

k−(1+ε/2) <∞.

Hence by the Borel-Cantelli lemma,

lim inf
k→∞

ξp(Tk)− Tk
hp(Tk)

≥ −(1 + 2ε) a.s.. (5.3)

Since ξp(t) is a non-decreasing random function of t, for every Tk ≤ t ≤ Tk+1, we
have

ξp(t)− t
hp(t)

≥ ξp(Tk)− Tk
hp(Tk)

− Tk+1 − Tk
hp(Tk)

.

For p > 1 elementary calculus implies

lim
k→∞

Tk+1 − Tk
hp(Tk)

= 0,

so that

lim inf
t→∞

ξp(t)− t
hp(t)

≥ lim inf
k→∞

ξp(Tk)− Tk
hp(Tk)

a.s.,

which finishes the proof of this step. �

Step 2. Let p > 1, then, for every ε ∈ (0, 1),

lim inf
t→∞

ξp(t)− t
hp(t)

≤ −(1− ε) a.s.

Proof : As in the proof of the lower bound, put

Tk = exp(k(1+ε2)/p), Sk = Tk − (1− ε)hp(Tk), k ≥ 1.

Let

Bk = {ξp(Tk) ≤ Sk} =
{

sup
Sk<t≤Tk

QX(t)

fp(t)
< 1

}
.
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It suffices to show P (Bn i.o.) = 1, that is

lim
m→∞

P

( ∞⋃

k=m

Bk

)
= 1. (5.4)

Let

ak0 = Sk, yk0 = fp(a
k
0), bk0 = ak0 + yk0 ,

aki = bki−1, yki = fp(a
k
i ), bki = aki + yki , Mk

i = (aki , b
k
i ], M̃k

i =
Mk

i

yki
= (ãki , b̃

k
i ].

Define Jk to be the biggest number such that bkJk−1 ≤ Tk and bkJk
> Tk. Note that

Jk ≤ [(Tk − Sk)/fp(Sk)].
Since fp is an increasing function,

Bk ⊃
Jk⋂

i=0

{
sup
t∈Mk

i

QX(t)

fp(t)
< 1

}
⊃

Jk⋂

i=0

{
sup
t∈Mk

i

QX(t) < yki

}

=

Jk⋂

i=0





sup
s∈M̃k

i
τ≥0

Zyk
i
(s, τ) < m(yki )




.

Analogously to (4.4), define a discretization of the set M̃k
i × J(yki ) as follows

ski,l = ãki + lqki , 0 ≤ l ≤ Lk
i , L

k
i = [1/qki ], q

k
i = θki

∆(yki )

yki
, θki =

(
m(yki )

)−4/α̂
,

τki,n = τ(yki ) + nqki , 0 ≤ |n| ≤ Nk
i , N

k
i = [τ∗(yki )/q

k
i ].

Recall that α̂ = min(α0, α∞) and let

Ak =

Jk⋂

i=0





max
0≤l≤Lk

i

0≤|n|≤Nk
i

Zyk
i
(ski,l, τ

k
i,n) ≤ m(yki )−

(θki )
α̂
2

m(yki )




.

Observe that

P

( ∞⋃

k=m

Ak

)
≤ P

( ∞⋃

k=m

Bk

)
+

∞∑

k=m

P (Ak ∩Bc
k) .

Furthermore,

∞∑

k=m

P (Ak ∩Bc
k)

≤
∞∑

k=m

Jk∑

i=0

P


 max

0≤l≤Lk
i

0≤|n|≤Nk
i

Zyk
i
(ski,l, τ

k
i,n) ≤ m(yki )−

(θki )
α̂
2

m(yki )
, sup
s∈M̃k

i
τ≥0

Zyk
i
(s, τ) ≥ m(yki )




≤
∞∑

k=m

Jk∑

i=0

P


 max

0≤l≤Lk
i

0≤|n|≤Nk
i

Zyk
i
(ski,l, τ

k
i,n) ≤ m(yki )−

(θki )
α̂
2

m(yki )
, sup

s∈M̃k
i

τ∈J(yk
i )

Zyk
i
(s, τ) ≥ m(yki )



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+

∞∑

k=m

Jk∑

i=0

P


 sup

s∈M̃k
i

τ /∈J(yk
i )

Zyk
i
(s, τ) ≥ m(yki )


 . (5.5)

By Theorem 3.1 and Theorem 3.2, for sufficiently large m and some K1,K2 > 0,
the first sum is bounded from above by

∞∑

k=m

Jk∑

i=0

K1
(yki )

γ

m(yki )
Ψ(m(yki ))e

−(m(yk
i ))

3/K2

≤
∞∑

k=m

Jk∑

i=0

K1P

(
sup

(s,τ)∈[0,1]×R+

Zyk
i
(s, τ) > m(yki )

)
e−(m(yk

i ))
3/K2

≤
∞∑

k=m

Jk∑

i=0

K1P

(
sup

t∈[0,fp(ak
i )]

QX(t) > fp(a
k
i )

)
e−(log ak

i )
3/2/K2

≤ K
∫ ∞

m

ψ(fp(x))

fp(x)
e− log3/2(x)/K2 dx <∞.

Note that by (3.13), for sufficiently large m, the term in (5.5) is bounded from
above by

K

∞∑

k=m

Jk∑

i=0

(yki )
γ

m(yki )
Ψ(m(yki )) exp

(
− b
4
log2m(yki )

)

≤ K
∫ ∞

m

ψ(fp(x))

fp(x)
e−

b
4 (

1
2 log2 x))2 dx

<∞.
Therefore

lim
m→∞

∞∑

k=m

P (Ak ∩Bc
k) = 0

and

lim
m→∞

P

( ∞⋃

k=m

Bk

)
≥ lim

m→∞
P

( ∞⋃

k=m

Ak

)
.

To finish the proof of (5.4), we only need to show that

P (An i.o.) = 1. (5.6)

Similarly to (5.2), we have

∫ Tk

Sk

1

fp(u)
P

(
sup

t∈[0,fp(u)]

QX(t) > fp(u)

)
du ∼ (1 − ε)p log2 Tk.

Now from Theorem 4.4 it follows that

P (Ak) ≥
1

4
exp

(
−(1− ε2)p log2 Tk

)
−KS−ρ

k ≥ 1

8
k−(1−ε4),

for every k sufficiently large. Hence,
∞∑

k=1

P (Ak) =∞. (5.7)
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Applying Berman’s inequality, we get for t < k

P (AkAt) ≤ P (Ak)P (At) +Qk,t, (5.8)

where,

Qk,t =
∑

0≤i≤Jk
0≤j≤Jt

∑

0≤l≤Lk
i

0≤p≤Lt
j

∑

|n|≤Nk
i

|m|≤Nt
j

|ryk
i ,y

t
j
(ski,l, τ

k
i,n, s

t
j,p, τ

t
j,m)|

√
1− r2

yk
i ,y

t
j

(ski,l, τ
k
i,n, s

t
j,p, τ

t
j,m)

× exp

(
−
(m(yki )− (m(yki ))

−3)2 + (m(ytj)− (m(ytj))
−3)2

2(1 + |ryk
i ,y

t
j
(ski,l, τ

k
i,n, s

t
j,p, τ

t
j,m)|)

)
.

For any 0 ≤ i ≤ Jk, 0 ≤ j ≤ Jt, 0 ≤ l ≤ Lk
i , 0 ≤ p ≤ Lt

j , and t < k,

yki s
k
i,l − ytjstj,p = aki + yki lq

k
i −

(
atj + ytjpq

t
j

)
≥ Sk − Tt ≥ Sk − Tk−1 ≥

1

2
(Tk − Tk−1),

where the last inequality holds for k large enough since it is easy to see that

Sk+1 − Tk
Tk+1 − Tk

∼ 1, as k→∞.

Thus, sufficiently large k and every 0 ≤ t < k, and a generic constant K > 0,
similarly to (4.1) we have,

sup
0≤i≤Jk
0≤j≤Jt

0≤l≤Lk
i ,0≤p≤Lt

j

|n|≤Nk
i ,|m|≤Nt

j

|ryk
i ,y

t
j
(ski,l, τ

k
n , s

t
j,p, τ

t
j,m)| ≤ K(Tk − Tk−1)

−λ/2 ≤ min(1, λ)

32
.

Therefore, for some generic constant K not depending on k and t which may vary
between lines, for every t < k sufficiently large,

Qk,t ≤ K
∑

0≤i≤Jk
0≤j≤Jt

Lk
i L

t
jN

k
i N

t
j (Tk − Tk−1)

−λ/2 exp

(
−
(m(yki ))

2 + (m(ytj))
2

2(1 + λ
16 )

)

≤ K(Tk − Tk−1)
−λ/2(Lk

Jk
Lt
Jt
)2

×
∑

0≤i≤Jk
0≤j≤Jt

(
aki log

γ−1
2(1−α∞)

−p aki

)− 1

1+ λ
16

(
atj log

γ−1
2(1−α∞)

−p atj

)− 1

1+ λ
16

≤ K(Tk − Tk−1)
−λ/2 (logTk)

υ
(Tk)

λ
8

1+λ
8 (Tt)

λ
8

1+λ
8

≤ KT−λ/8
k ≤ K exp(−λk(1+ε2)/p/8),

with υ > 0 a fixed constant. Hence we have,
∑

0≤t<k<∞
Qk,t <∞. (5.9)

Now (5.6) follows from (5.7)-(5.9) and the general form of the Borel-Cantelli lemma.
�
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Step 3. If p ∈ (0, 1], then, for every ε ∈ (0, 14 ),

lim inf
t→∞

log (ξp(t)/t)

hp(t)/t
≥ −(1 + 2ε) a.s. (5.10)

and

lim inf
t→∞

log (ξp(t)/t)

hp(t)/t
≤ −(1− ε) a.s., (5.11)

Proof : Put
Tk = exp(k), Sk = Tk exp (−(1 + 2ε)hp(Tk)/Tk) .

Proceeding the same as in the proof of (5.3), one can obtain that

lim inf
k→∞

log (ξp(Tk)/Tk)

hp(Tk)/Tk
≥ −(1 + 2ε) a.s.

On the other hand it is clear that

lim inf
t→∞

log (ξp(t)/t)

hp(t)/t
= lim inf

k→∞

log (ξp(Tk)/Tk)

hp(Tk)/Tk
a.s.

since

lim inf
k→∞

log (Tk/Tk+1)

hp(Tk)/Tk
= 0.

This proves (5.10).
Let

Tk = exp
(
k1+ε2

)
, Sk = Tk exp (−(1− ε)hp(Tk)/Tk) .

Noting that
Sk+1 − Tk
Sk+1

∼ 1 as k →∞,

along the same line as in the proof of (5.4), we also have

lim inf
k→∞

log (ξp(Tk)/Tk)

hp(Tk)/Tk
≤ −(1− ε) a.s.,

which proves (5.11). �

6. Appendix

Proof of (3.10). Let g1(t) = g(τ∗t). Then it suffices to prove the claim in
(3.10) for

g1(t) =
|1 + t|2α∞ + |1− t|2α∞ − 2|t|2α∞

2
.

Note that g1(t) = g1(−t), t ≥ 0, it is sufficient to prove the argument for t ≥ 0. We
distinguish three scenarios: 0 < α∞ < 1/2, α∞ = 1/2 and 1/2 < α∞ < 1.
We first focus on α∞ = 1/2. If α∞ = 1/2, then

g1(t) =

{
1− t 0 ≤ t ≤ 1
0 t ≥ 1,

which implies that (3.10) holds for g1(t).
Next we consider 0 < α∞ < 1/2. For 0 < t ≤ 1, the first derivative of g1

ġ1(t) = α∞
(
(1 + t)2α∞−1 − (1 − t)2α∞−1 − 2t2α∞−1

)
< 0.

Moreover, for t > 1, by the convexity of t2α∞−1

ġ1(t) = α∞
(
(1 + t)2α∞−1 + (t− 1)2α∞−1 − 2t2α∞−1

)
> 0.
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Additionally, direct calculation shows that limt→∞ g1(t) = 0. This means that for
0 < α∞ < 1/2, g1(t) is strictly decreasing over (0, 1) and increasing over (1,∞) with
g1(0) = 1, g1(1) < 0 and limt→∞ g1(t) = 0. This implies that for any 0 < δ < 1,

sup
t>δ

g1(t) < 1.

Thus (3.10) holds for g1 with 0 < α∞ < 1/2.
Finally, we focus on 1/2 < α∞ < 1. For 0 < t < 1, using the fact that s2α∞−2 is
strictly decreasing over (0,∞), we have

ġ1(t) = α∞
(
(1 + t)2α∞−1 − (1 − t)2α∞−1 − 2t2α∞−1

)

≤ α∞
(
(1 + t)2α∞−1 − (1 − t)2α∞−1 − (2t)2α∞−1

)

= α∞(2α∞ − 1)

(∫ 1+t

1−t

s2α∞−2ds−
∫ 2t

0

s2α∞−2ds

)
< 0.

For t > 1, by the convexity of t2α∞−1,

ġ1(t) = α∞
(
(1 + t)2α∞−1 + (t− 1)2α∞−1 − 2t2α∞−1

)
< 0.

Additionally, direct calculation shows that limt→∞ g1(t) = 0. Thus we have that
g1(t) is strictly decreasing over (0,∞) with g1(0) = 1 and limt→∞ g1(t) = 0. Clearly,
for any 0 < δ < 1,

sup
t>δ

g1(t) < 1,

implying that (3.10) holds for 1/2 < α∞ < 1. This completes the proofs.
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