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Abstract. We consider a stationary queueing process @ x fed by a centered Gauss-
ian process X with stationary increments and variance function satisfying classical
regularity conditions. A criterion when, for a given function f, P(Qx (¢t) > f(t) i.0.)
equals 0 or 1 is provided. Furthermore, an Erdés-Révész type law of the iterated
logarithm is proven for the last passage time £(¢) = sup{s : 0 < s < t,Qx(s) >
f(s)}. Both of these findings extend previously known results that were only avail-
able for the case when X is a fractional Brownian motion.

1. Introduction and Main Results

Let X = {X(t) : t > 0} be a centered Gaussian process with stationary incre-
ments and almost surely continuous sample paths. Given ¢ > 0, consider a reflected
(at 0) Gaussian process Qx = {Qx(t) : t > 0} given by the following formula

QRx(t) = X(t) — ¢t + max (QX(O), - iI[lf ](X(s) - cs)) . (1.1)
se|0,t
It is well known in queueing and risk theory, e.g., Reich (1958), that the unique
stationary solution of (1.1) has the following representation
Qx(t)= sup (X(t)—X(s)—c(t—23)).
—oo<s<t

Due to numerous application, @ x has been studied in the literature under different
levels of generality, e.g., Norros (1994); Hiisler and Piterbarg (1999); Debicki (2002);
Hiisler and Piterbarg (2004); Dieker (2005); Hashorva et al. (2013); Liu et al. (2015).
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Let f be any positive nondecreasing function on R. Kolmogorov’s zero-one law
implies that the process @Qx crosses the function f infinitely many times with
probability 0 or 1. Assume that P (Qx(¢) > f(t) i.0.) = 1 and define §; = {£4(¢) :
t > 0} as the last crossing time before time ¢, that is,

§r(t) =sup{s: 0 < s <t,Qx(s) > f(s)}.
By the assumption on f it follows that

lim ;(t) =c0 and limsup(&f(t) —t) =0 as.

t—o0 t—00

The purpose of this paper is to provide a tractable criterion to verify the zero-
one law as well as to give the asymptotic lower bound on {;(t) —¢t. Erdds and
Révész (1990) investigated the lower bound in the case when @Qx is substituted by
Brownian motion W and f(t) = 1/2tlog, t with log,t = loglogt¢. Subsequently
similar results are known as Erdés—Révész type law of the iterated logarithm.

In the reminder of the paper we impose the following assumptions on variance
function o2 of X:

AT: limy o 02(t)/t2% = Ay, for some Ao > 0, as € (0,1). Further, o2
is positive and twice continuously differentiable on (0,00) with its first

derivative 02 and second derivative o2 being ultimately monotone at oo.
ATL: lim,_,o+ 02(t) /12?0 = Ay, for some Ay > 0, ag € (0, 1].

Assumptions AI-AII allow us to cover models that play important role in Gauss-
ian storage models, including both aggregations of fractional Brownian motions and
integrated stationary Gaussian processes see, e.g., Norros (1994); Hiisler and Piter-
barg (1999); Dieker (2005); D(bl(kl (2002). In further analysis we tacitly assume
that the variance function o2 of X satisfies both AI and AIIL. Our first contri-
bution is the following criterion; see, e.g., Watanabe (1970); Qualls and Watanabe
(1971) for similar results in the classical setting of non-reflected stationary Gaussian
process.

Theorem 1.1. For all positive and nondecreasing functions f on some interval
[T,00), T >0,

P(Qx(t) > f(t) i0)=0 or 1,

according as the integral

Y(f(w) N o
/ f(u) is finite or infinite,

where

PY(u) =P < sup Qx(t) > u) .

te(0,u]

With 1 being the generalized inverse of

u(l4et)
m(u) = inf o (ut)

)
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define function f, by

folt) =T <\/2 <10gt+ (2(17_7_0;) —p) log, t>> ,

2(1-ax) oo > 1/2
’Y:

Qoo
2(14+ap—2ae0 ’
T ANV

and a positive constant ¢ as

1 , [A VAL T
(g - 5(7{"70400) ECQOO ( A ) ?

where the remaining constants are defined in Equation 3.43. Since the exact asymp-
totics of ¥ (u), as u grows large, were found in (Debicki and Liu, 2016), c.f., Theo-
rem 3.1, it follows that

2Upl9) _ eputog! 7 u) (1 + ou)), as u — cx. (13)

fo(u)

Hence, by Theorem 1.1, P(Qg, (t) > fp(t) i.0.) = 1 provided that p > 0, which
leads to the following conclusion after deriving the exact asymptotics of f,.

Corollary 1.2.

. Qx () (2Aw) 20w
lim sup T = 5 a.s.
t—00 (log ﬁ) 2(1—aco) A
Our second contribution is as follows.
Theorem 1.3. Ifp > 1, then

t)—t
lim inf M =—1 a.s.
t—00 hp t)

If p € (0,1], then

. Jog (&, 0)/t)
htrgérolf T ()t =-1 a.s.,
where
hy(t) = pﬁ(g)) log, .

Theorem 1.3 shows that for ¢ big enough, there exists an s in [t — hy(¢), t] such
that Qx(s) > fp(s) and that the length of the interval h,(t) is smallest possible.
Theorem 1.1 and Theorem 1.3 generalize the main results of Debicki and Kosinski
(2017), which considered the special case when X = By is a fractional Brownian
motion with any Hurst parameter H € (0,1); see also (Shao, 1992; Debicki and
Kosinski, 2018) for similar results for non-reflected Gaussian processes and Gaussian
order statistics. The organization of the rest of paper is as follows. The notation
and examples of Gaussian processes X that fall under our framework are displayed
in Section 2 followed by properties of the storage process Qx in Section 3. Section 4
gives two useful tools and some auxiliary lemmas for the proof of the main results
which are presented in Section 5.
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2. Notation and Special Cases

We write f(u) ~ g(u) if lim, oo f(u)/g(u) = 1. By & we denote the generalized
inverse function to o, ¥ denotes the tail distribution function of the standard Nor-
mal random variable. Function f is ultimately monotone if there exists a constant
M > 0 such that f is monotone over (M, o0). For a centered continuous Gaussian
process with stationary increments V = {V'(¢) : t € R}, such that V(0) =0,

oy (t) + o (s) —op(t — 5)
2 )

we introduce the generalized Pickands’ constant on a compact set £ C R? as

Hy(E) =Eexp (sup (\/iV(t) — U%/(t))) .

Cov(V(t),V(s)) = (2.1)

te
Let
. Hv([0,5])
Hy = Jim ——c—

We refer to (Debicki and Kosinski, 2014) for the finiteness of Hy (E) and to (Debicki
et al.,, 2017; Debicki and Hashorva, 2017) for the fact that Hy € (0,00). Fur-
thermore, see (Debicki, 2002; Dieker, 2005) for the analysis of other properties of
Pickands’-type constants.

Special cases. Fractional Brownian motion. Let By = {Bg(t) : t > 0} denote fBm
with Hurst index H € (0, 1] which is a centered Gaussian processes with continuous
sample paths and covariance function satisfying

2H 2H |4 _ J2H
S e,

Cov (Bu(t), Bu(s)) =
Direct calculations show that

02(t) = |1€|2H7 m(u) = Aut—H,

A_<c(1IjH))H1—1H’ B—<%H))H2H7 |
M(u) =A"Frusn, ) = (% (1ogu+ (% —p> log, u)>(m

2—3H
*\2H H(1-H)
hyp(u) :pcffilUlOgl_pUlng u, €= l(HBH)2 é <\/§(77)> <@> ,

2 B 1+ cr* A

with 7% = c(l—IjH) This coincides with (Debicki and Kosinski, 2017, Theorem 1 and
2).

Short-range dependent Gaussian integrated processes. Let X (t) = fg Y (s) ds where
Y is a centered stationary Gaussian process with unit variance and correlation
function r(t) = Cov(Y (s +1),Y(s)),s > 0,t > 0. We say that X possesses short-
range dependence property if:

S1: r is a continuous function on [0, 00) such that, lim;_, « tr(t) = 0;
S2: r is decreasing over [0,00) and [ r(t) dt = & for some 0 < G < oo;
S3: fooo s2|r(s)|ds < oc.
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The above assumptions go line by line the same as the assumptions in Debicki
(2002) except a little modification. S1-S3 cover wide range of stationary Gaussian
processes such as the process with correlation function

r(t) =e 1" ae (0,2

In particular if 7(t) = e~ !, X is the so-called Ornstein-Uhlenbeck process. Appar-
ently, if S1-S3 are satisfied, then

o?(t) = 2/015/08 r(v)dvds

satisfies AI-AII. Note that
2
o?(t) ~ 2, ast—0, o*(t)~ Et, as t — oo.

Debicki (2002, Proposition 6.1) shows that
m?(u) = 2Gu + 2G*G1 + o(1), as u — oo,

with G1 = [~ tr(t)dt. This indicates that m(u) can be replaced by m(u) =
V2Gu + 2G2G1 in Theorem 3.1 and Theorem 1.3. Under this replacement, we
have that

o 1

m(u) = ;—G -GG, flt)= el (logt+ (1 —p)log, t) — GGy

and )
2(Hn,)? (F(22))
A3/2\/BG ’

hy(u) = p€tulog' Pulogyu, € =

with 7/ = %X(?(%)t),/l =2c'/2 and B = 172

3. Properties of the storage process

Before we present our auxiliary results, we need to introduce some notation and
state some properties of the supremum of the process @ x as derived in (Piterbarg,
2001; Hiisler and Piterbarg, 2004). We begin with the relation

P sup Qx(t)>u | =P sup  Zy(s,7)>m(u) |, forany T >0, (3.1)
te[0,7) s€[0,T/u]
720

where

X(u(r+8)) — X (us)
u(l+er)

Note that Z,(s,7) is a Gaussian field, stationary in s, but not in 7. The variance

2
u

Zu(s,7) =

(1) of Z,(s,7) equals w?ﬁ%m?(u) and o, (7) has a single maximum point at

7(u) for u sufficiently large with lim, o 7(u) = 7*, where

a.

™ = EZ1_3?25;55' (3.2)

Taylor’s formula shows that, for each v > 0 sufficiently large,

UWﬂZ%UWD+%ﬁWMT;WM+%%@ﬁ—NWV
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with & € (7,7(u)). Noting that o, (7(u)) = 1, for u sufficiently large, ¢, (7(u)) =0
and for limy_soo 0, = 0

1. B
5%(5) - ﬂ‘ =0,

lim sup
U007 (u)| <8y

we have
1—ou(r)

lim sup
YTt (w), T (u)|<bu

with lim, . d, = 0, where

1= (=) T = () T

Let 7y (s,7,8",7") be the correlation function of Z, (s, 7) and Z,/(s’,7'). Then

-1
Tuw (8,7,8,7) = (20’(11,7’)0’(’[1,/7'/)) . ( —0?(lus —u's' + ur — u'r’|)

+ 0 (Jus —u's' +ut|) + 0 (Jus — u's’ — u'r'|) — o (Jus — u’s’|)).

Denote by

ru(s, 7,8, 7)) =ryu(s, 7,8, 7).
Then Lemma 5.4 in Debicki and Liu (2016) gives that, with &, > 0 and lim,,_,o0 6, =
0,

1 - T’u.(svTv 5/77—/)

lim sup - - —~— — 1 =0.
U005 ) (7)o ()l 7 () s <, | T Vo (ulo=o'])
(3.5)
Now assume that
ur +u'r’ l, (3.6)

lus —u's'| 2
and without loss of generality, us > u's’. Then Taylor’s formula gives that

—02(|lus — u's’ + vy — vo|Juru'7’

Tu,u’ (877—7 8/77-/) = ’

20 (ur)o(u'T")
with vy € (0,ur),v2 € (0,u'7"). Noting that by (3.6)

lus —u's" + v —va| > ur +u'T,
in light of (Bingham et al., 1987, Theorem 1.7.2) and by AI-AII we have

lus — u's’ + vy — va|202(|us — u's’ + vy — va)

/7
o [P — = 2000 (20000 — 1), as ur,u't’ — o0.
Hence
2

ard 7

us —u's’ + vy — vy

Tu,u/ (577', 5’, 7'/) ~ —000(20400 — 1) , as ur, U o0,

(3.7)
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where A = 1 — ay, > 0. This implies that for any 0 < € < % if

ut +u't’
— T <
|lus — u's’|
then, for ur and u7r’ both sufficiently large,
2)

a7

|Tu,u’ (577-7 5/77-/)| < (1 - 26)2((100_1) us —u's’

(3.8)

Next we focus on the case when u ~ v/, [s—s'| < M and |[T—7o|, |7/ —7*] < §(u,u’)
with 7* defined in (3.2) and limy, /00 0(u, w’) = 0. In light of AT and AII, noting
that o2 is bounded over any compact interval, using uniform convergence theorem
in Bingham et al. (1987) we have that, for u ~ v/,

o?(lus —u's' + ut|) + o (jus — u's’ — u'7’|)

lim sup 2
U U200 |5 o/ | <M, |7 —7*|, |7/ —7*| < (u,u’) g (’LL)

—|S—S/+T*|2a°° _ S—S/—T*|2a°°i :07

o%(Jus —u's' +ur — u'7'|) + o2 (lus — u's'|)

lim sup 5
u,u’ =00 |s—s'|<M,|T—7*|,|7" —7*| <8 (u,u’) g (U)
—2|s — §'|**=| =0,
/
lim sup 70(UT;U(UT ) — |7* 2= | = 0.
W00 oy | <M r—r| |7 =7 <o(u) | 02 (W)
Hence for u ~ o’
lim sup [Tuu (s,7,8,7) —g(s —s")| =0, (3.9)
W00 | ot | <M, |r =] 77— 7| <8 ()
with
(t) B |t 4 T*|2a°° + |t _ T*|2a°° _ 2|t|2a°°
g\t) = 2(7) 2000 :
Note that g(0) =1 and for any 0 < § < 1, there exists 0 < ¢s < 1/2 such that
inf g(t) >0, supg(t) <1-—cs. (3.10)
[t|<es |t]>6

The proof of (3.10) is postponed to Appendix. Following (3.9) and (3.10) , we have
that with u ~ u/, for u sufficiently large,

Tuu (8,7,8,7) >68/2, (3.11)

in
ls—s"|<cs,|T—7*[,|7"—7*|<6(u,u’)
sup Tuu (8,7,8,7)<1—c5/2 < 1. (3.12)
ls—s'|>0,|7—7*[,|7/—7*[<6(u,u’)
3.1. Asymptotics. Let 7*(u) = (logm(u))/m(u) and J(u) = {7 : |7 — 7(u)| <
7*(u)}. Due to the following lemma, while analyzing tail asymptotics of the supre-
mum of Z,,, we can restrict the considered domain of (s,7) to a strip J(u).

Lemma 3.1 (De¢bicki and Liu (2016), Lemma 5.6 and Theorem 3.3). There exists
a positive constant C' such that for any v, T > 0,

uY

P < sup Zy(s,7T) > m(u)) <CT
(

s,7)E[0,T]x (J(u))e

w(on(w)exp (3 log*m(u) ).
(3.13)

m(u)
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where b = B/(2A). Furthermore, for any T > 0 such that, there exist ¢ € (0,1)
and H' € (—v/2,0), such that u < T < exp(em?(u)) for u sufficiently large,

P(( s zu<s,r>>m<u>>—mn%>2 T T () (1+0(1)),

[0,T] % J () B (u)
(3.14)
where
Ba. (1) Qoo > 1/2
Mo (1) = § HE=X(F(RE=)) a=1/2

Bao (t) oo < 1/2

A%\ 200 _2/aoo

NN -2

=1 (F(2=2)) Qe =1/2

VEA (77)2%00 —2/ao

() G <1/2

with ~y defined in (1.2) and 7 given by (3.2).

3.2. Discretization. For a fixed T,60 > 0 and some u > 0, let us define a discretiza-
tion of the set [0,7] x J(u) as follows

s=lg(u). 0<1< L, L=[T/q(w)], olw) =62 Aw) = % (%)

Tn=7(u) + ng(u), 0 <|n|] < N, N=[1%(u)/q(w)], Ein(w)=][s1,S141] X [Tn, Tn+1]-

Along the similar lines as in (Hiisler and Piterbarg, 2004, Lemma 6) we get the
following lemma.

Lemma 3.2. There exist positive constants K1, Ko,ug > 0, such that, for any
0 = 0(u) > 0 with limy_o O(u) =0, u > ug and n € (0, min(ayg, o))

P [nax Zu(s1, ) < m(u) — %, Ses[%pT] Zu(s, ) > m(u)
0<[n[<N red ()
u’Y _ p—2H
< Klmlll(m(u))e "2
with H € (0, min(ag, deo) — 7).
Proof: Conditioning on Z,(s;, 7,) = m(u) — %, we have for u sufficiently large

on
P <Zu(sl,7n) < m(u) — Wj( )selgp ( )ZU(S,T) > m(u))
8,7 1n(u

0o 1 _ () —y/m(u)?

— - e 20% (tm)
on V2mm(u)oy (1)

x P sup  Zyu(s,7) > m(u)
(8,7)EEL n(u)

Zy(81, ) = m(u) — m?u)) dy
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2 L
< K e 2:13((:—71) /00 e2y
~ V2rm(u) on

Y
x P sup  Zyu(s,7) —m(u) > 0|Zy(s1, 1) = m(u) — dy.
((m)eEz,n(u) m(u)

Moreover,

Zu(s,7) — m(u)|Zy(s1, ) = m(u) — LI Yu(s,7) + h(u,y),

holds for (s,7) € Ej n(u), where

Yu(s,7) = Zu(s,7) — ru(s, T, sl,Tn);:((:_j) Z (81, Tn),
h(u,y) = ru(s, 7, Sl,Tn);:(—(;)) (m(u) - m?u)) —m(u).

Taylor’s formula gives that

m(uh(u,y) = —m*(@)(1 = ru(s,7,51,7)) = m* (W)ry(s,7, s51,720) (1 - oD )

ou(Tn)

- Tu(S, T, SlaTn)

Gu(T) (T — 7) 4+ (1/2)64 (V) (T — 70)?

Ou (Tn)

< _m2 (U)TU(S, T, Sl Tn)

- Tu(S, T, SlaTn)

with v € (7, 7). Using the fact that ¢, (7(u)) = 0 and sup,¢ j(y) [Gu(7)| < 28 for
u sufficiently large, by Taylor’s formula, we have
m?(u)|&u(7)(Tn = )| = m* (W)|(6u(7) = du(r(w)))(Ta = 7)|
= m*(u)|7, — 7|6 (v1) ((u) — 7)|
2B )
28 2 gl ()
B 92B m(u)A(u)
A u
with vy € (7,7(u)). Note that by AI-AII

m(u)A(u)

IN

log m(u),

2— oo_l [e'e) 0021 2
logm(u) ~ Qu®? logu,  with vg_{ Qai,l_éa z <1§2

@0

Since v < 0 for all ay € (0, 1], then
m?(w)|6u (7) (7 — 7)| = 0(0), u — oco.

m(u)A(u)

m @) - ) < & (TS 2 o),

Due to the fact that y > 07 with 0 < n < 1, we have
h(u,y) < —y(1 +o(1)).
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Consequently, for u sufficiently large

P < sup  Zy(s,7) —m(u) > 0|Zy(s1,Tn) = m(u) — g )

(5,7)€E1,n (u) m(u)
Yu y'n
<P sup )Lt ar) Y (1+0(1))
(s,7)€[0,1]2 ou(Tn +qT) SUp-¢io,1) Ou(Tn +q7)
Yu y'n
<P sup  m(u) (51 + 45,7 + q7) > Y
(s,7)€[0,1]2 UU(Tn + QT) 2

By (3.5) for u large enough
Yu n Yu /7 n d
mQ(U)Var< (sitgs,ma+qr)  Yu(si+gs',7 +QT)>
Oy (Tn + (JT) Ou (Tn + (JT/)
< 8m2(u)(1 —ru(s) + g8, T 4+ q1, 514 q5', T + q7'))
o2(ug(u)|s — ') + o2(ug(w)|s + 7 — 5 —7'|)

< 16mw) 202 (ur")
< M4+ =4 )
N )
<xe (S T Ry ) =P = )

with s,s',7,7" € [0, 1],

where h(t) = ‘T;S) and 1’ € (n, min(ag, @)). Then it follows from AI and AII
that h(t) > 0,t > 0 is a regularly varying function at both 0 and co with indices
2(a0 — 1) > 0 and 2(ase — 1) > 0 respectively; see Bingham et al. (1987) for
the definition and properties of regularly varying functions. Next we focus on the
boundedness of sup, c(o,1 %‘i‘j)}sll). If limy, 00 A(u) = 00, noting that h is
bounded over any compact interval, then uniform convergence theorem in Bingham

et al. (1987) gives that

: h(A(u)f]s — s'|)
lim sup |—————-F17—-
U0 5 5€[0,1] h(A(U’))
implying that there exists K7 > 0 such that for u large enough
h(A(u)fls — s
p MA@ =)
s,5'€[0,1] h(A(U))
For the case lim, oo A(u) = 0, uniform convergence theorem in Bingham et al.

(1987) can similarly show that the above argument holds. For lim, ,. A(u) €
(0, 00), it is obvious that

lim sup A(A(u)d|s—s'|)=0, lim h(A(u)) € (0,00).

U—r 00 875/6[0,1] U—r 00

= (s — 5= <o,

< Kj;.
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Thus the boundedness of sup, ,¢(o.1) %W also holds. The boundedness of
h(A(u)0|s+7—s"—71'|)

SUPs, s/, 7,77€[0,1] h(A(w) can be given similarly. Thus we have that
m?(u) Var (Y“(Sl +q8, 7 +q7)  Yu(si+gs', 70 + CJT'))
ou(Tn +q7) Y aap—

< KGQ”,(LS - s’|2’7/ + |7 - 7"|2”,), s, 8, 7,7 €10,1],
with 7' € (n, min(ag, @o)). Similarly

Yu(s1+qs, 7 +q1)
a'u(Tn + qT)

sup m?(u) Var

) < K67
s,7€[0,1]

Hence in light of Piterbarg inequality (Piterbarg, 1996, Theorem 8.1 or Debicki and
Liu, 2016, Lemma 5.1), we have for u sufficiently large

Yu y'n
]P’< sup  m(u) (51 + 98,7 +47) > y)
(

s,7)€[0,12 ou(Tn +qT) 2

/ Yu ) In —n’
P < sup 07" m(u) (50 + 3, 7w + 47) > Zg ")
(

s,7)€[0,1]2 Ou (Tn + (JT) 2
< K1(yH’”/)Q/”'*le*—(ye}"/P
Consequently,
on
P <Zu(sl, Tn) < m(u) — W, (Sﬁ)selgl))n(u) Zu(8,7) > m(u))

K _ m2(u) [e'e] 9*77/ 2
< 716 2"%("71) e2y(y9_n,)2/n,_le_%dy
0

= V2rm(u) n

K, MEUIOR ' iy _¥?
e 202(m) N 20" 2 ek gy
gn—n’

= V2rm(u)

K __m2w) 02(n—n")
S —e 2"'%("71) e_ Ko
V2rm(u)

Using the above inequality and (3.3), we have that

on
P| max Z,(s;,7) < m(u) — ) sup Zu(s,7) > m(u)

0<I<L ()
0<[n|[<N m(u) (s,7)€E[0,T]x J(u)

> P(Z( ) < mlw)~ Z,(s.7) <>>
< w(sy, ) <m(u) — ——,  sup w(5,7) > m(u
0<I<L,|n|<N m(u) (s,7)EE n(u)

K, m?(w)  p2(n—n’)

< 76_ 20%(mn) ¢ Ko
- Z V2rm(u)

0<I<L,|n|<N

K _e2(i—n") m2(w) (1+B(ng)2 /(44))
<L—c¢ K3 E e 2

Vamm(u) In|<N

- K u 2 m2(u) 9 9 _92(71*77/)
- T2 K
= l(mwm(u)) ‘ ©



464 K. M. Kosinski and P. Liu

<Ki—— W
m(u)

This completes the proof. (I

Finally, by following the same arguments as in Debicki and Liu (2016, Theorems
3.3) with the supremum functional substituted by its discrete counterpart, the
maximum, we state the following result. Note that the asymptotic result below is
a discrete version of (3.14) in Theorem 3.1.

Lemma 3.3. For any T,0 >0, as u — oo,

P Or%nlz%XL Zu(s1, ) >m(u) | = (’Hfl%o )2‘ /%gawT#’;)\I/(m(u))(l +o(1)),
0<[n]<N

where HY) = limgs_,00 S~ Eexp (SuptGGZﬁ[O,S] (V200 (t) = Var(fa. (t)))) '

By the monotone convergence theorem, it follows that ’Hza — Hppoo as 0 =0,
since H,,_ is a positive, finite constant and 7, has almost surely continuous
sample paths. Consequently, when the discretization parameter 6 decreases to zero

so that the number of discretization points grows to infinity, we recover (3.14).

4. Auxiliary Lemmas

We begin with some auxiliary lemmas that are later needed in the proofs. The
first lemma is (Leadbetter et al., 1983, Theorem 4.2.1).

Lemma 4.1 (Berman’s inequality). Suppose &1,...,&, are standard normal vari-
ables with covariance matriz A1 = (Allj) and M1, ...,Nn similarly with covariance
matriz A® = (AY ;). Let p; j = max(|A} ;],[AY]) and let uy, . .., u, be real numbers.
Then,

Pl (G <ud | =P (s <w}

7j=1 7j=1
o " 2(1+ pi)

The following lemma is a general form of the Borel-Cantelli lemma; cf. (Spitzer,
1964).

Lemma 4.2 (Borel-Cantelli lemma). Consider a sequence of event {Ep}2,. If
> P (E) < o,
k=0

then P (E,, i.0.) = 0. Whereas, if

> P(Ey) =00 and liminf Zlfkftﬁn ( 1! D
k=0 n—o00 (Zk:1 P (Ek))

then P (E,, i.0.) = 1.
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Lemma 4.3. For any ¢ € (0,1), there exist positive constants K and p depending
only on €,qp, s and p such that

P (S5 <)

< exp (—(1 - 5)/ L]P’ <t€[sup Qx(t) > f,,(u)) du) +KS™°,

s+1,(5) Jo(w) 0,/ (w)]

for any T — f,(S) > S > K, with f,(T)/fp(S) < C and C being some universal
positive constant.

Proof: Let ¢ € (0,1) be some positive constant. For the remainder of the proof
let K and p be two positive constants depending only on €, ag, oo and p that may
differ from line to line. For any k& > 0 put so = S, yo = fp(s0), to = S0 + Yo,
o = fp(tO) and

sk =th1+erp_1, Yr=[p(sk), th=sk+uyr, = [fp(tr)
Ik:(sk7tk]; jk:I—k:(gk,tNk], |I~k|:%
L Ty
From this construction, it is easy to see that the intervals [ are disjoint. Further-
more, 0 (I, Ix11) = exg, and 1 —e < yi/z, < 1, for any k > 0 and sufficiently large
S. Note that, for any k > 0, |I| > f,(S), therefore if T'(.S, ¢) is the smallest number
of intervals {I;} needed to cover [S,T], then T'(S,e) < [(T — S)/(fp(S)(1 + ¢))].
Moreover, since f,(T")/f»(S) is bounded by the constant C > 0 not depending on
S and ¢, it follows that, xj/z; < C for any 0 <t < k < T(S,¢).
Now let us introduce a discretization of the set I x J(xx) as in Subsection 3.2,

That is, for some 6 = %, define grid points

: Ax
Skl :Sk+lqk7 OSZSLIW Lk = [(1—5)/(]1@]7 qk =0 ikk)a
Thon = T(Tk) +nge, 0<|n| < Ng, Np=["(zx)/q]
Since f, is an increasing function, it easily follows that,
T(S,e)
t
P sup QX()§1 <P ﬂ {SUPQX(t)Sxk}
s<i<T fp(t) Pl
T(S,e)
S P m sup Zlﬂk (877—) S m(.’L'k)
k=0 s€l [z
TeJ(xk)
T(S,e)
= <
<P m Ogll%)ik Zo, (Skis Thn) < m(xg)
k=0 L o<mi<N,
T(S,e)
: H : S Za (Sk’l’Tk’") < m(xk) + Z Ck,t =P+ P,

0<I<Ly
k=0 0<|n|< Ny 0<t<k<T(S,e)
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where the last inequality follows from Berman’s inequality with

Ch D T2 e (Skls Thons Stps Tem )|
=

0<I<Ly [n|<Nyg \/1 mk ' SkJ? Tk,n» St,p> Tt,m)
0<p<L: |m|<N;

X exp (_ 3(m*(zx) + m? () ) .

1 + |Txk,xt (Sk,l; Tk,ns St,p, 7—t,mb)|

Estimation of Py:

Since for any u the process Z,, is statlonary in the first variable, from Theorem 3.3
we have that, as S — oo (noting that § = ) —0)

P max  Zy, (Sk1, Ten) > m(zr) | ~P ( sup Zyp (8,7) > m(xk)>
(

0<I< L, :
0<n|<Nx s,7)EIL X J(xk)

uniformly with respect to 0 < k < T'(S,e). Hence for any ¢ € (0, 1), sufficiently
large S and small 6,

T(S,e)
Py <exp| - P o Dax Zy, (8,0 Thon) > m(y)
S Lk
k=0 0<|n| <Ny,

- T(S,e)
<exp | —(1-2) P < sup  Zy,(s,7) > m(m))
k=0

(s,7)EI X J(z})

Then, by (3.1) combined with Theorem 3.1,

T(S,e)
P <exp|—(1- E) Z P | sup Zs, (s,7) > m(zk)
4 k=0 sefk

7>0

=exp | —(1— E) Z P sup  Qx(t) > fp(te)
k=0

1[0, fp (t4)]

fo(sk)
f;o(tk)

- T(S,e)
<exp|—-(1-3) Pl sup  Qx(t) > fp(ty)
t€[0. £ ()]

xp | —(1 — —1 P Q d
< 1 u u u | .
=P ( ( ) /SJrfp(S) fp(u) <t€[§7f§(u)] x(t) > ol )> )

Estimation of Py:

For any 0 <t < k <T(S,¢),0 <1< L, 0<p< L, we have

TSk, — TtSt,p = (Sk + xrlqr) — (s¢ + 24pqy)

k— k—1
Z Yi +exi) + zrlgn — zepqr > Z Yi +Exi) =yt
i=t i=t

k—1

Y

Yi-
i=t+1
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Recall that A = 1 — ais. Hence we can find sg > 2 such that for S sufficiently large,
k—t>2s0,0<1<Lg 0<p<Ly|n| <Niand |m| < Ng

ThThon + TeTem _ Tk(Thn + Tem)

|£Ck8k,l - $t5t7p| - Zf:_tlJrl Yi

< 1/3,

which applied to (3.8) indicates that for k — ¢ > s¢ and S sufficiently large,

Tkt = sup |Tquzt (Skﬁla Tk,ns St,p» Ttﬁm)|
0<I<Ly,0<p<L:
[n|<Ny,|m|<Ny

22
_ VETkTknTtTt,m

< 32(1—0oo) sup z:kf

0<I<Ly,0<p<Ly i Yi

|2 SNyl <N e

A A

< 32(1—(100) Lk Thkn TtTt,m
B 0<i<Lybkp<L SEL gl ISy

SIS Lg,VSpS Lt — 7 = 4

\n|§Nk7|m\SNt 1=t+1 1=t+1

g A
Tt Y
SKT < K(k-1) Sz- (4.1)
i=t+1 Yi

For 1 <k —t < sg, it follows that z ~ x4, 7,y — 7" and 7, = 7% as S — o0, and
Sk — Stp > €xy/x > €/2 for S sufficiently large. Therefore, by (3.12) there exists
a positive constant ¢ € (0,1) depending only on ¢ such that for S sufficiently large

%

Sup - g = sup sup |Tzk,zt(8k,l,7'k,n,St,pﬂ't,m)| <(¢<1l (4-2)
1<k—t<so 1<k—t<so 0<I<Ly,0<p<L,
[n|<Ng,|m|<N:

Finally, note that; c.f., (1.2),

2(1 —e)ay, 2 5
N, <L — " " < Kz < K(logt),) T e
k< Lj < D) = xy, < K(logty) ,
m?(zy, logt;,)?P™ 20-ax)
o (-2 _ gt T

so that

4 2 2
P<——— ) LiLNiNerj,exp <_m (;11) + m (%))
vVi=¢ 0<t<k<T(S,e) )

<K oo+ Y )

0<k—t<sg k—t>so
0<t<k<T(S,e) 0<t<k<T(S.e)

- 8 m2(17k)
§K<kz_ox’“wexp<_ ¢ >

m2(zr) + m?(x4)
+ (zrpz)™(k—t) exp | —
0<t<k<T(Se)
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__2_ “OF T
EEE S Y R AN R D

o0
<K |t
k—t>sgo
0<t<k<T(S,e)
1 __1
R (R - )

k=0

k=[S
<KS™*,
where the last inequality follows from basic algebra.
Let S > 0 be any fixed number, ay = S, yo = fp(ao) and by = ag+yo. For i > 0,
- M;
- = (aia bz]

O

DY
] [S]<t<k<oo

~

define
Yi = fplai), bi=ai+yi, M;=(a;,bi), M;= "
K3
(4.3
From this construction, it is easy to see that the intervals M; are disjoint, Us_oM; =

a; =bi—1,

(S,b;], and | M;| = 1. Now let us introduce a discretization of the set M; x J(y;) as
Ay

(yi) (4.4)

3

in Subsection 3.2. That is, for § = %, define grid points
sig=a; +1g, 0<I1<L; Li=[1/q], q=20

Yi
0<|n[<Ni, Ni=[r"(y:)/al-

Tin = T(Yi) + ngi,
where & = min(ap, A ),

With the above notation, we have the following lemma.
Lemma 4.4. For any e € (0, 1), there exists positive constants K and p depending
—4/a
K3 )

Sl

0

only on €, ap, Ao and p such that, with 8; = (m(y;))
m(yi)

max  Zy,(8i1, Ti;n) < m(yi) —
) du) - KS™°,

(T—-85)/f7(5)]
F m 0<I<L;
=0 0<|n|<N;
1 !
>_wp_u+@/-——P swp Qx(t) > fy(w)
s To(W) \reo.5, ()
for any T — f,(S) > S > K, with fp,(T)/fp(S) < C and C being some universal

positive constant.
I=[(T=25)/fp(S)]-

Proof: Put
() = mly:) —
m\Yi) = m\Yi) — )
m(y:)
Similarly as in the proof of Theorem 4.3 we find that Berman’s inequality implies

- Y Diyj=PF+P,

I
0<i<j<I

P
0<i<L;
0<|n|[<N;

=0

max Zyi(si,lvTi,n) < m(yz) -

max Zyz‘ (Si,lvTi,n) < m(yZ)

I
it
0<I<L;

0<In|<N;

=0
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where
Z Z TUMU] Si,0, Tisns Sj,ps Tiom)) ™+
T 0<I<Li |n|<N: \/1 (86,05 Tins Sj.ps Tjm)
0<p<Ly |m|<N,
) L2 () + ()
exp | — = ,
1+ |Tyzwyj (Si,la Ti,ns Sj,ps ijm)|

with

Tyiy; (8ils Tins S4,p> Tiom) = —Tyu s (Si,0s Tisns $5,ps Tom)-

Estimation of Py :

By Theorem 3.1 the correction term 9?‘/ ?/m(y;) does not change the order of
asymptotics of the tail of Z,,. Furthermore, the tail asymptotics of the supremum
on the strip (s,7) € M; x J(y;) are of the same order if 7 > 0. Hence, for every
>0,

I
1 .
P > 1P|~ ZP Og%g)z Zy (i1, Tin) > m(yi)
=0 0<[n]<N;
> 1 SP Z,,(5,7) > m(y;) 91%
> —exp | — sup (s, 7)) >m(y;) —
4 i SEMi m(yl)
TEJ (i)
1 I
>—exp | —(1+¢) Z]P’ sup Zy, (s, 7) > m(y;)
4 i=0 Se%i

1 I
= Zex — € P su X plai
1 p( (1+ )Z (te[o fﬁamQ (t) > fil )))

T 1
u u du
< (1+e) s folu) (te[g,ff<u>1QX(t)>fp( )> )

provided that S is sufficiently large along the same lines as the estimation of P in
Theorem 4.3.

=

Estimation of Pj:

Clearly, for j > i+2, and any 0 <! < L;, 0 <p < L;; c.f. (4.3),

Yisip = Yisia = a; +y;pg; — (@i +vila) > Y Yk
k=i+1

Hence there exists sop > 2 such that for j —i > 50,0 <1 < L;, 0 < p < Lj, |n| < N,
|m| < N; and S sufficiently large

YjTjm + YiTin < Yj (T],m + 7 n) <

isip = visial = S0 uk

Wl
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Analogously as the derivation of (4.1), by (3.8) for j —i > sg and S sufficiently
large

| >

R & ) . . . £\

Tig = sup |7y, (Si,ts Tions Sjpy Tim)| < K(k—1)7" <
0<I<L;,0<p<L;

[n|<N;,|m|<N;

where A = 1 —ay. For 1 < j—i < so, it follows that Yi ~ Yj, Tin — T and
Tim — T as S — oo, and S;; — Sjp > Yir1/y; > for 2<j—i<syand S
sufficiently large. Therefore, by (3.12) there exists a positive constant ¢; € (0,1)
depending only on ¢ such that for S sufficiently large

sup 77 ;= sup sup 7y. s (Sists Tigns Sjps Tim)| < G (4.5)
2<j—1<so 2<j—i<so 0<I<L;,0<p<L;
[n|<N;, [m|<N;
Moreover, by (3.11) there exist positive constants § € (0,1) and ¢s € (0,1),
M < 1, such that, for sufficiently large S,
inf Ty .(s7’s’7")>é
lyi—ys|<es,lr—r=| |/ —r=|<pr POHET 2
Hence for sufficiently large S and 0 <1< L;, 0 <p < L,, |n| < N;, |m| < N;
(Fyoy, (S0, Tins Sips Tim )T =0, 3 j=1i+1, |sig—sjpl < cs. (4.6)
By (3.12) there exits (2 € (0,1) such that for S sufficiently large and 0 <1 < L;,
0<p<Lj [n| <N;, Im| <N;
|Pys s (Sits Tims Si.ps Tiom)| < G2y B G =i+1, [sig = sjp| 2 c5. (4.7)

Let ¢ = max((y,2). Therefore, by (4.2)—(4.7) we obtain

5 (2 (yi) +1m°(y;))
P/ S exp <_2 )
’ 0<; 10<IZ<L |n§N VI=¢ L+¢
1<j—i<so 0<p<L; [m|<N;
3 (2 (i) +1m°(y;))
DTS e ().

0<i<I—2 0<I<L; |n|<N;
i+s0<j<I 0<p<Lj |m|<N;

Completely similar to the estimation of P, in the proof of Theorem 4.3, we can
arrive that there exist positive constants K and p such that, for sufficiently large .S,

P, <KS™".
O

The next lemma is a straightforward modification of (Watanabe, 1970, Lemma
3.1 and Lemma 4.1), see also (Qualls and Watanabe, 1971, Lemma 1.4).

Lemma 4.5. It is enough to proof Theorem 1.1 for any mondecreasing function f

such that,
i (Viogt) < f(t) < f (/3logt) (48)

forallt > T, and T large enough.
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5. Proof of the main results

Proof of Theorem 1.1: Note that the case .7y < oo is straightforward and does
not need any additional knowledge on the process QQx apart from the property
of stationarity. Indeed, consider the sequence of intervals M; as in Theorem 4.4.
Then, for any € > 0 and sufficiently large T,

P = P b I
k—%ﬂ (tsélfl\gf)k Qx(t) > f(ak)> k—Z[T] <te[§}?()bk)] Uxe) > S k)> = Jr <o

and the Borel-Cantelli lemma completes this part of the proof since f is an increas-
ing function.

Now let f be an increasing function such that .#; = oo. With the same notation
as in Theorem 4.3 with f instead of f,, we find that, for any S,e,6 > 0,

P(Qx(s) > f(s) io) > P ({sup Qx(t) > f(tk)} 1.0.)

tely
> P max  Zy, (ki Tkn) > m(xy) o i0.
0<I<Ly
0<|n|< Ny
Let
FE = max Lz, (Sk.i, T < m(z
% omax o (S, Ten) < m(xy)
0<|n|< Ny,

For sufficiently large S and sufficiently small 8; c.f., estimation of P;, we get

ZP(E;) >(1-¢) /SOO L)IP’ ( sup  Qx(t) > f(u)) du=00. (5.1)
k=0

+res) F(w) \eepo,r(w)
Note that
1-P(Ef io)= lim k]_'[ P(E) + lim_ (]P’ <ID Ek> - k]_'[ ]P(Ek)> .

The first limit is zero as a consequence of (5.1), and the second limit will be zero
because of the asymptotic independence of the events Ej. Indeed, there exist
positive constants K and p, depending only on «y, a0, €, A, such that for any n > m,

P((n] Ek> - f[ P (Ey)
k=m

k=m

Apn = < K(S+m)?,

by the same calculations as in the estimate of P, in Theorem 4.3 after realizing
that, by Theorem 4.5, we might restrict ourselves to the case when (4.8) holds.
Therefore P (E¢ i.0.) = 1, which finishes the proof. O

Proof of Theorem 1.3:
Let &, = &y, for short.

Step 1. Let p > 1, then, for every e € (0, %),

ot = @
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Proof: Let {Ty : k > 1} be a sequence such that T, — oo, as k — oo. Put
Sk = T, — (1+2e)h,(Ty). Since hy(t) = O(tlog' Ptlogyt), then, for p > 1,
Sk ~ Ty, as k — 0o, and from Theorem 4.3 it follows that

p(igpi’“(g)ﬂ <1+ 25)2) =P (&(T}) < Sp) =P <sf<35ﬂ ?[j(g) < 1)

Ty
< exp (—(1 - 5)/ L]P’ <t€[sup Qx(t) > fp(u)> du) +2KT, "

St fo(Se) fp(W) 0,fp ()]

Moreover, as k — oo,

/ —P sup  Qx(t) > fp(u) | du
St to(S0) To(W) - \sefo. g, w)

~ (14 25)hp(Tk)ﬁ]P’ <t€[ sup  Qx(t) > fp(Tk)> = (1 + 2¢)plog, Ty

0, fo(T)]
(5.2)
Now take T}, = exp(k'/?). Then,
D P (&(Th) < Sp) <2K Y k0 < oo
k=1 k=1
Hence by the Borel-Cantelli lemma,
o 5p(Th) = T
> — .S.. .
hknig.}f T 2 (14+2¢) as (5.3)

Since &, (t) is a non-decreasing random function of ¢, for every Ty, <t < Tjy1, we
have

&) =t &) =T Tepr — T
hp(t) = hp(Thk) hp(Tk)
For p > 1 elementary calculus implies

lim Thy1 — Tk
k—o00 hp(Tk)

207

so that

lim inf L(t) — ! > liminf 7&)(7}6) — T
t—oo Dy (t k—o0 hp(Tk)

which finishes the proof of this step. O
Step 2. Let p > 1, then, for every ¢ € (0, 1),

R
htIglorolfphpT S —(1 —E) a.s.

Proof: As in the proof of the lower bound, put
Ty = exp(k0F/P) S =Ty — (1= e)hy(Th), k> 1.
Let

B = {&(Tk) < Sk} = { sup Qxl) 1}-

Sp<t<Ty fp(t)
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It suffices to show P (B,, i.0.) = 1, that is

lim P < G Bk> =1. (5.4)

k=m
Let
af =S, y§ = fylag), b5 = af +yp,
k k k k k k k k k 1k rk Mk k 7k
a; :bi—17 Yi :fp(ai), bi =a; +vy;, Mi :(aiabi]a Mi :y—[z:(ai’bi]'
K2

Define Jj, to be the biggest number such that bﬁk_l < T} and bﬁk > T}.. Note that
Je < [(The = Sk)/ fp(Sk)]-

Since f, is an increasing function,

Jr Jk
B D ﬂ { sup QX((? < 1} D ﬂ { sup Qx(t) < yf}

i=0 (tEM

Ji
= ﬂ sup Zyr(s,7) < m(yF)
i—0 | seMF
720

Analogously to (4.4), define a discretization of the set MF x J(y¥) as follows

A(yF —4/a
domab gt 0<1<IE L= [1gh), o = 082U gk () YO
mF. = 1(yf) +ngf, 0 < |n| < NF, NF = [r*(y})/q}).

i,m

Recall that & = min(ag, @) and let

" o e (0%
Av= ()] max, Zy(slirl) SmOb) = s
= OST"\_S]QZC l

Observe that

k=m k=m

Furthermore,

> P (AN Bf)

k=m
X k _k k (91?)% k
< P max Z,k(si,, 75 ) <m(y;’) — —t=—, sup Z,x(s,7) >m
> k;ﬂ ; OSlSLf Y; ( .l z,n) (y’L ) m(ylk) SEJ\IZ_’“ Y ( ) (y’L )
0<|n| <N =
- - b (O9)% ;
< ZZP max ny (i1 Tim) < m(y;’) — — sup Zy;c (s,7) = m(y;)

0<I<LY
0<In|<N} ek
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o0 Jk
+ Z ZP sup Zyi(s,7) 2 m(yF) | . (5.5)
k=m i=0 SEM;

T¢I (yr)
By Theorem 3.1 and Theorem 3.2, for sufficiently large m and some Ki, Ko > 0,
the first sum is bounded from above by

o0 J}C k ¥ 3
Z ZKl (y; )k \I,(m(yzlc))e—(m(yf))?/Kz

oo Ji
<> ZKJ"( sup  Zyp(s,7) > m<y5>> e~ (mi)* K

k=m i=0 (s,7)E[0,1] xR ¢

oo Jg
—(log ak)3/
< Z ZKﬂP <t6[ sup Qx(t) > fp(af)> e (log a*)3/2 /K

0,fp(af)]

k=m 1=0

> 1/)(f10(33))6710g3/2(z)/1<2 T 00
SK/m fo() oo

Note that by (3.13), for sufficiently large m, the term in (5.5) is bounded from
above by

oo Ji k\vy
i Z Z (y;") \If(m(yzk)) exp (—Z 10g2 m(yf)>

k
k=m i=0 m(y;)
< K/oo 7/)(fp(x)) efg(%log2 x))? dax
m fo(2)
< 00.
Therefore
rr}gnoo]; P(AxNB;) =0
and
P (kU Bk) 2 Jim P (kU Ak) -

To finish the proof of (5.4), we only need to show that
P (A, i0.) = L. (5.6)

Similarly to (5.2), we have

7
o
—P sup  Qx(t) > fp(u) | du ~ (1 —¢e)plogy Ty
s, To(W) \iepo,f,(u)

Now from Theorem 4.4 it follows that
1 _ 1
P(Ag) > 7% (—(1—&*)plog, Ty,) — K S, ” > §k7(1754),

for every k sufficiently large. Hence,

k=1
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Applying Berman’s inequality, we get for t < k

P(AA) <P(Ap)P(Ay) + Qe (5.8)
where,
kzv Tins S0 )|
0<ZZ<Jk 0<ZZ<Lk n|<ZNk \/1 5 (851 T 85 T )

0<I=Jt g<p< it [m[<N!

y < (m(yf)—(m(yf))3)2+(m(y§-)—(m(y§))3)2>
exp | — .

2(1 + |T‘yf,y; (Sﬁb Tﬁn’ S;’,;ﬂ Tjtm)D

Forany 0 <i < Ji, 0<j < J;,, 0 <I<L},0<p <L and t <k,

1
VSt = Y5sh, = ar +yilar — (af +yipag) > Sk =Ty > Sp = Ter > 5 (Th = Te),

where the last inequality holds for k large enough since it is easy to see that

Sk1 — Tk,

———— ~1, ask— oo.
Thy1 — Tk

Thus, sufficiently large k and every 0 < ¢ < k, and a generic constant K > 0,
similarly to (4.1) we have,

min(1, A)
0<i<Jy o S Tiam 32
0<j<J¢
k £
0<I<LF,0<p<L!
[n|<NF,|m|<N}

sup |75 y;(sﬁl,Tk st )N < KTy —Tg—1)" M2 <

Therefore, for some generic constant K not depending on k£ and ¢ which may vary
between lines, for every t < k sufficiently large,

_ (m(yf))? + (m(y}))?
Qre <K Y LFLINFNNT, —Tpq) M ?exp | — —
0<i<.J, 21+ 5)
0<5<Je

< K(Tj, — Th1) M3(LY LY,)?

X E (a log 2(1-ace) Sy P ’“) 1+ 15

0<i< Jg
0<j<J;

+ wly
+ wly

Py
8

< K(Ty — Tp1) ™2 (log Ti)" (T) "
< KT, M® < K exp(—Ak1F</78),

R ()

with v > 0 a fixed constant. Hence we have,

Z Qp,t < 00. (5.9)

0<t<k<o0o

Now (5.6) follows from (5.7)-(5.9) and the general form of the Borel-Cantelli lemma.
O
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Step 3. 1f p € (0,1], then, for every ¢ € (0, 1),
log (gp( )/t) > —(

ligg)lf O 14+2¢) as. (5.10)
and

lim inf log %%ﬂ <-(1-¢) as., (5.11)
Proof: Put

Ty :exp(k), Sk =T} exp(—(1+28)hp(Tk)/Tk).
Proceeding the same as in the proof of (5.3), one can obtain that
. 1og (§p(Th)/T)
liminf —=—>— L2 >
k—o0 hp(Tk)/Tk -
On the other hand it is clear that

lim inf ——=2—1—= log (fp( )/1) = liminf log (& (Tk)/Tk)
O S Ay

—(1+4+2¢) as.

since log (Te/Ths1)
.. Og (Lk/Lk+1
liminf —-————~——— =0.
k—oo hp(Tk)/Tk
This proves (5.10).
Let 2
T = exp (K<), Sk = Texp (—(1 - £)hy(Ti)/Ti)
Noting that
Sk1 — Tk
Sk+1
along the same line as in the proof of (5.4), we also have

liming 108 (& (Th)/Ti) _

k— o0 hp(Tk)/Tk
which proves (5.11). O

~1 ask— oo,

—(1—¢) as.,

6. Appendix

Proof of (3.10). Let g1(t) = g(7*t). Then it suffices to prove the claim in
(3.10) for
1—|—t2a°°—|— 1—t2a°° _2t2aoo
oty < W= i — s

Note that ¢1(t) = g1(—t),t > 0, it is sufficient to prove the argument for ¢ > 0. We
distinguish three scenarios: 0 < aoo < 1/2, oo = 1/2 and 1/2 < aeo < 1.
We first focus on oo = 1/2. If oo = 1/2, then

11—t 0<t<1
gl(t)_{ 0 t>1,

which implies that (3.10) holds for g;(¢).
Next we consider 0 < o < 1/2. For 0 < t < 1, the first derivative of ¢g;

1(E) = g (14 1)1 — (1 — )21 _ g2am1) <
Moreover, for t > 1, by the convexity of ¢2¥e~1
1(E) = oo (14 £)%0 =1 4 (£ — D)2 1 _ g2am1) 5
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Additionally, direct calculation shows that lim;_,o g1(¢) = 0. This means that for
0 < oo < 1/2, g1(2) is strictly decreasing over (0, 1) and increasing over (1, co) with
91(0) =1, g1(1) < 0 and lim;_, g1(¢) = 0. This implies that for any 0 < § < 1,
sup g1(t) < 1.
t>5
Thus (3.10) holds for g1 with 0 < ay < 1/2.
Finally, we focus on 1/2 < as, < 1. For 0 < t < 1, using the fact that s2¥=~=2 is
strictly decreasing over (0, 00), we have

G1(t) = oo (14 t)20= 71 — (1 — )21 9f200—1)
< i (14 1)20 71 — (1 — t)2o—t — (2t) 207 1)

14t 2t
= Qoo (20000 — 1) </ g2 "2(s — / s2o‘°°_2ds) < 0.
1—t 0

For t > 1, by the convexity of ¢2¥=~1,
gl(t) = Qo ((1 + t)2o¢oo—1 + (t _ 1)20[00—1 . 2t2aoo—l) <.

Additionally, direct calculation shows that lim; . g1(¢) = 0. Thus we have that
g1(t) is strictly decreasing over (0, 00) with g1 (0) = 1 and lim;_, g1(¢) = 0. Clearly,
for any 0 < § < 1,

sup g1(t) < 1,
t>4

implying that (3.10) holds for 1/2 < as < 1. This completes the proofs.
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