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Abstract. Given an energy potential on the Euclidian space, a piecewise deter-
ministic Markov process is designed to sample the corresponding Gibbs measure.
In dimension one an Eyring-Kramers formula is obtained for the exit time of the
domain of a local minimum at low temperature, and a necessary and sufficient con-
dition is given on the cooling schedule in a simulated annealing algorithm to ensure
the process converges to the set of global minima. This condition is similar to the
classical one for diffusions and involves the critical depth of the potential. In higher
dimensions a non optimal sufficient condition is obtained.

1. Introduction and main results

1.1. Simulated annealing. The simulated annealing algorithm is a classical stochas-
tic optimization algorithm, which can be seen as a descent algorithm perturbed
by random locally counter-productive moves to escape from non-global minima.
More precisely, consider an energy potential U on the Euclidian space such that
e−U ∈ L1(Rd). The mass of the Gibbs law associated to 1

εU ,

µε(dx) =
e−

U(x)
ε∫

Rd e
−U(y)

ε dy
dx,

concentrates on the set of global minima of U as ε > 0, called the temperature,
goes to zero. At fixed temperature, µε can be sampled by a Markov Monte-Carlo
procedure, namely it can be approximated by the law of Xε

T where (Xε
t )t≥0 is an

ergodic Markov process whose invariant law is µε and T is large enough so that
the process is close to equilibrium at time T . A usual choice for Xε would be the
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Fokker-Planck diffusion, that is the solution of

dXε
t = −∇U (Xε

t ) dt+
√

2εdBt, (1.1)

where B is a Brownian motion. In the simulated annealing algorithm the tempera-
ture εt decays over time, so that the solution of this stochastic differential equation
becomes an inhomogeneous Markov process (Xεt

t )t≥0. If the system cools slowly,
i.e. if t 7→ εt goes to zero slowly enough, then the process has enough time to
explore the space and approach equilibrium, so that the law of Xεt

t gets and stays
close to its “instantaneous” invariant law, µεt . In particular, the mass of the law of
Xεt
t goes to the set of the global minima of U as t goes to infinity. However, if the

system is abruptly frozen, in other word if the decay t 7→ εt is too fast, the process
will have a non-zero probability to be trapped in local minima.

There is a broad literature on this question, both theoretical and practical, and
we refer to Kalivas et al. (1995) for an introduction. A key phenomenon in the anal-
ysis of this algorithm (and of many stochastic algorithms, indeed) is metastability
(cf. Lelièvre, 2013): at low temperature, the process spends a lot of time trapped in
a neighbourhood of local minima, so that mixing - i.e. convergence to equilibrium
(at fixed temperature) - is very slow. This yields extremely slow theoretical cooling
schedules t 7→ εt to ensure the process converges in probability to the set of global
minima of U . For instance in the Fokker-Planck diffusion case, it is well-known
(see Holley et al. (1989) among others) that in order for the process to converge
in probability to any neighbourhood of the global maxima of U , εt should be of
order at least E∗

ln(1+t) where E∗ is the critical depth of the potential, a constant that

depends on U which will be defined below.
One line of inquiry to improve the algorithm is then to look for other dynamics

than (1.1), which would have more inertia and thus would escape more easily from
local traps. One of the main example is the kinetic Langevin dynamics, studied in
Scemama et al. (2006); Monmarché (2015). Among other possibilities, the reversible
dynamics (1.1) is perturbed in Lelièvre et al. (2013) with a divergence-free drift; or
processes with more general memories than kinetic ones are considered in Gadat
and Panloup (2014).

In this work we propose a Markov process (Xt, Yt)t≥0 on Rd × Sd−1 with the
following properties :

• dXt = Ytdt.
• the process is ergodic (in the sense that for all initial condition, its law con-

verges to a unique invariant law µ), and the first marginal of µ is prescribed
as e−U(x)dx.
• Yt is a jump process.

The first property means (Xt, Yt) is a kinetic process, such as the kinetic Langevin
one, and we call X the position and Y the velocity. The second one means it serves
its intended purpose. Finally the fact that Yt is a jump process on the sphere makes
the whole process very easy to sample on a computer. More precisely between two
times of jump of Yt, (Xt, Yt) is completely deterministic. Such piecewise determin-
istic Markov processes (PDMP) have recently attracted much attention in various
fields, since they are a simple alternative to diffusions to model stochastic systems
(see Azäıs et al. (2013) and references within for an overview).
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In dimension greater than 1 there are many ways to meet the above requirements
and thus in a first instance we will focus on the case d = 1, for which the possibilities
are more limited.

1.2. The one-dimensional process. Our aim is to define a Markov process (Xt, Yt)
with the properties above. In dimension one, the velocity is either 1 or −1. If the
process goes twice through the same state (x, y), necessarily it has had to make
a U-turn in the meanwhile and come back the other way, hence to visit (x,−y).
On average (in time), (x, 1) and (x,−1) are thus equally visited. Ergodicity then
implies the invariant law is necessarily a product measure whose second marginal
is uniform on {±1}.

Recall that the semi-group (Ps,t)t≥s≥0 and the infinitesimal generator (Lt)t≥0

associated to the process are defined as

Ps,tf(x, y) = E [f(Xt, Yt) | (Xs, Ys) = (x, y)]

for all bounded f and

Ltf = lim
h→0

Pt,t+hf − f
h

whenever this limit (say in the uniform norm sense) exists. When the process is
homogeneous (in our case, it means when the temperature is constant, which is the
case for now), we only write Pt = P0,t and L = Lt. We will describe the dynamics
through the generator.

In dimension one, the only possibility when a jump occurs is to transform the
velocity into its opposite. This yields an infinitesimal generator of the form

Lf(x, y) = yf ′(x, y) + λ(x, y) (f(x,−y)− f(x, y)) (1.2)

where the rate of jump λ is a non-negative function. In this case, the law µ is
invariant iff

∫
Lfdµ = 0 for all f . This is equivalent to

yU ′(x) = λ(x, y)− λ(x,−y),

which is satisfied if and only if λ is of the form λ(x, y) = 1
2 (yU ′(x) + a(x)) for some

function a(x) (note that necessarily a(x) = λ(x, y) +λ(x,−y)). The non-negativity
of λ implies a(x) ≥ |U ′(x)|. When this is indeed an equality, λ(x, y) = (yU ′(x))+

(where (g)+ denotes the positive part of g, equal to g if g > 0 and 0 else): this is
the choice that minimizes the rate of jump, namely the dissipative behaviour of the
process. On the other hand it is convenient from the simulation viewpoint. Indeed,
it implies that while YtU

′(Xt) ≤ 0, or in other words while the process is going
down the potential, no jump is allowed. On the contrary if YtU

′(Xt) > 0 the next
time T of jump will be such that

E :=

∫ T

0

yU ′(x+ ys)ds = U(x+ yT )− U(x)

has an exponential law with mean 1, which we denote by E(1). Thus we only need
to compute the potential along the trajectory, and to simulate a Poisson process.
More precisely, let (Ek)k≥0 be a family of i.i.d. variables with exponential law and
set (X0, Y0) = (x0, y0) and T0 = 0. Suppose the process is already constructed up
to a jump time Ti, i ≥ 0, and is independent from (Ek)k≥i up to Ti. Let

Ti+1 = inf

{
t > Ti,

∫ t

Ti

λ (XTi + YTi(s− Ti), YTi) ds ≥ Ei
}

(1.3)
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Xs = XTi + YTi(t− Ti) for s ∈ [Ti, Ti+1]

Ys = YTi for s ∈ [Ti, Ti+1)

YTi+1
= −YTi .

This define a Markov process (Xt, Yt) with generator (1.2).
In the literature such a process, which belongs to the larger class of switched

PDMP (Benäım et al., 2012) goes sometimes by the name of (integrated) telegraph
process (Ratanov, 2015; Monmarché, 2014). It can be seen as the continuous limit
of persistent walks (Diaconis and Miclo, 2013; Miclo and Monmarché, 2013), which
were already studied as a possible alternative to reversible walks to sample discrete
Gibbs measures, and it is reminiscent of the so-called Hit-and-Run sampler (Bélisle
et al., 1993). It has already been studied to model the motion of the bacterium Es-
cheria coli (Calvez et al., 2015; Fontbona et al., 2012; Erban and Othmer, 2004/05)
and is called in this context a velocity jump process, which is the name we are going
to use since it still makes sense in a metastable context and in dimension greater
than 1 (see Section 1.4).

1.3. Main results in dimension one. As a first step we will consider the velocity
jump process (Xε

t , Y
ε
t )t≥0 on R×{±1} at low (but fixed) temperature ε > 0, namely

with generator

Lf(x, y) = yf ′(x, y) +
1

ε
(yU ′(x))+ (f(x,−y)− f(x, y)) . (1.4)

We want to understand how long it takes for the process to escape from a local
minimum. Let U be a double-well potential, namely a Morse function with two
local minima, denoted by x0 ≤ x2, a local maximum x1 ∈ (x0, x2), and which is
convex outside (x0, x2) and goes to infinity as |x| → ∞. Recall that U is said to
be a Morse function if all its critical points are non-degenerate; in other words if
(U ′(x) = 0)⇒ (U ′′(x) 6= 0). Suppose (Xε

0 , Y
ε
0 ) = (x0,−1), and let

τ = inf {t > 0, Xε
t = x1}

be the first hitting time of x1 (note that, contrary to a diffusion which may fall
back, when Xε reaches x1 it deterministically leaves [x0, x1] and falls down to x2).
Then the energy barrier to overcome in order to leave [x0, x1] is U(x1)−U(x0). We
will prove what is usually called an Eyring-Kramers formula (or an Arrhenius law):

Theorem 1.1. For the velocity jump process with generator (1.4) starting at
(Xε

0 , Y
ε
0 ) = (x0,−1) in the double-well potential U ,

E [τ ] =

√
8πε

U ′′(x0)
e
U(x1)−U(x0)

ε

(
1 + o

ε→0
(1)
)
,

P (τ ≥ tE [τ ]) −→
ε→0

e−t.

This can be compared to the case of a Fokker-Planck diffusion Zεt with generator

Ldif(x) = −U ′(x)f ′(x) + εf ′′(x),

which has been studied in much more general settings. Let η > 0 be small and

τdi = inf {t > 0, Zεt = x1 + η} .

The work of Bovier et al. (2004, 2005) applies here and yields:
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Theorem 1.2 (from Bovier et al., 2004, 2005). For the Fokker-Planck diffusion
starting at Zε0 = x0 in the double-well potential U ,

E [τdi] =
2πe

U(x1)−U(x0)
ε√

|U ′′(x1)|U ′′(x0)

(
1 + o

ε→0
(1)
)
,

P (τdi ≥ tE [τdi]) −→
ε→0

e−t.

Remarks:

• Both processes samples the same Gibbs law. To sample the diffusion, one
needs to generate a Brownian motion, while the PDMP can be constructed
from a sequence of independent exponential variables (Ek)k≥0.
• The velocity jump process moves at constant speed. In particular it takes

a constant time (constant in the sense it does not depends on ε) to pass
through the interval (x1− η, x1 + η), whose probability under the law µε is
of order

exp

(
−1

ε
(min(U(x1 − η), U(x1 + η))−min (U(x0), U(x2)))

)
.

Since the ratio between the average times spent in this interval and outside
of it should be of this order, it means the time between two crossing of
(x1 − η, x2 + η) needs to be of order the inverse of this probability, which
explains the exponential factor of E [τ ] had to be expected.
• The fact U ′′(x1) does not appear in the PDMP case is also natural. Indeed,

the probability that the process starting at (x0, 1) reaches x1 in one shot
(i.e. before coming back to (x0,−1)) depends only on U(x1) − U(x0),
and not on the local geometry of the potential near x1. On the contrary
the process stays mainly in the neighbourhood of x0, so that U ′′(x0) does
intervene. If U were flat, for instance U = d

(
1− 1[x0−1,x0+1]

)
for some

d > 0, an adaptation of the proof of Theorem 1.1 would yield E [τ ] ' 2e
d
ε .

• Both E [τ ] and E [τdi] have the same exponential order.

With Theorem 1.1 in mind we then turn to the study of the inhomogeneous
process (Xεt

t , Y
εt
t ) with generator

Ltf(x, y) = yf ′(x, y) +
1

εt
(yU ′(x))+ (f(x,−y)− f(x, y)) . (1.5)

Assumption 1.

• The cooling schedule t 7→ εt > 0 is non-increasing and goes to 0.
• The potential U on R is a smooth Morse function with a finite number of

local extrema (one of which at least is a non-global minimum), unbounded
and convex at infinity.

We say that z is reachable from x at height V if max{U (x+ t(z − x)) , t ∈
[0, 1]} ≤ V and we call the depth of a local minimum x the smallest V such that
there exist a z with U(z) < U(x) which is reachable from x at height U(x) + V
(the depth of a global minimum is set to +∞). The critical depth of U , denoted
by E∗, is then defined as the maximal among the depths of all local minima of U
which are not global minima (see Fig. 1.1).

Adapting to our settings the work of Hajek (1988) on simulated annealing on a
discrete space, we will prove the following :
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Figure 1.1. The depth of a local minima, and the critical depth.

Theorem 1.3. Let U and (εt)t≥0 satisfy Assumption 1 and consider the process
(Xεt

t , Y
εt
t ) with generator (1.5) and any initial condition. We have the following:

(1) If S is a neighbourhood of all local minima of U , then

lim
t→∞

P (Xεt
t ∈ S) = 1.

(2) If S is a neighbourhood of all local minima of depth E, and its complemen-
tary Sc is a neighbourhood of all other local minima,

lim
t→∞

P (Xεt
t ∈ S) = 0 ⇔

∫ ∞
0

(εs)
− 1

2 e−
E
εs ds =∞

(3) As a consequence,

∀δ > 0 lim
t→∞

P
(
U (Xεt

t ) < min
R

U + δ
)

= 1 ⇔
∫ ∞

0

(εs)
− 1

2 e−
E∗
εs ds =∞

In particular if the cooling schedule is of the parametric form

εt =
c

ln(1 + t)

with c > 0, the algorithm succeed (i.e. the process converges in probability to any
neighbourhood of the global minima of U) if and only if c ≥ E∗.

It is somehow a negative result: it means this velocity jump process does not
allow faster cooling schedules than the classical reversible diffusion one. On the
other hand it is somehow a positive result, since it allows cooling schedule as fast
as the diffusion and it is easier and faster to compute numerically. Finally, positive
or negative, it is above all a theoretical result. In practice the simulation is done in
a finite time horizon; a context where the theoretical logarithmic schedules are far
from efficient. The next step of the study should thus be to give non-asymptotic
results in the spirit of the work of Catoni (1992).

Before proceeding to the proofs, here is a remark about our method. The extreme
simplicity of the motion permits an elementary analysis. We could have tried to
use functional inequalities tools, such as in Holley et al. (1989); Miclo (1992) (see
also Ané et al. (2000) for a general introduction). Indeed, since U is assumed to
be convex at infinity, it is known the associated Gibbs measure satisfies a spectral
gap (or Poincaré) inequality, with a well-understood asymptotic of the constant.
But since the carré du champs of the velocity jump process is not the square of the
gradient, it is not clear whether it gives any information on the way the process
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relaxes to equilibrium. This is a typical problem in the field of hypocoercivity,
and indeed our PDMP has been studied in Calvez et al. (2015); Monmarché (2014)
from this viewpoint. But in both works the rate of jump is assumed to be bounded
from below by a positive constant, which means there is at all time a residual
randomness. This is not the case with our minimal choice λ(x, y) = (yU ′(x))+ and
in this sense our process is quite degenerate among degenerate processes.

However, if on the one hand some ideas are missing to treat this degenerate
situation with hypocoercive tools, on the other hand, hopefully, once precisely
understood thanks to elementary analysis, this process may be a good benchmark
to investigate several hypocoercive questions, such as the relationships between
functional inequalities, gradient estimates and Wasserstein convergence.

Finally note that, even if the pathwise strategy we will adapt from Hajek is
very close to the Freidlin and Wentzell (2012) approach, the latter theory would
yield slightly less precise results since for continuous-time processes it only deals
with the large deviation scaling (namely with the asymptotic of quantities such as
1
t lnP(Xε

t ∈ A) rather than P(Xε
t ∈ A)).

Figure 1.2. At a jump time the process bounces off the level sets
of U .

1.4. Definition and results in any dimension. The interest of the simulated anneal-
ing algorithm appears in large dimension, and so we now define a suitable piecewise
deterministic Gibbs sampler in this context. We call velocity jump process the
Markov process on Rd × Sd−1 whose generator is

Lf(x, y) = y.∇xf(x, y) + (y.∇xU(x))+ (f(x, y∗)− f(x, y))

+ r

(∫
f(x, z)dz − f(x, y)

)
,

where r > 0 is a parameter, dz denotes the uniform measure on Sd−1 and

y∗ = y − 2

(
y.
∇xU(x)

|∇xU(x)|

)
∇xU(x)

|∇xU(x)|

(the explanations of this definition is postponed to the end of this section). As we
will see, the measure e−U(x)dx × dy is invariant for this process. A trajectory is
defined in a similar manner that in dimension 1, except that there are now two
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different clocks:

T = inf

{
t > 0,

∫ t

0

(Y0.∇U (X0 + Y0s))+ ds ≥ E1

}
,

S =
1

r
E2,

where E1, E2 are independent standard exponential random variables. The process
evolves deterministically according to dX = Y and dY = 0 up to time T ∧ S, at
which its velocity jumps from Y to Y ′ uniformly sampled on the sphere if T∧S = S,
or to Y ∗ if T∧S = T . This latter case means that only the part of Y which is parallel
to ∇xU(X) jumps (to its opposite), while the orthogonal part is left untouched.
An interpretation is that when it jumps, the process is deterministically reflected
according to optical laws – or as a billiard – on the level set of U it has reached
(see Fig 1.2).

We restrict the study to a compact case: suppose U is smooth and 1-periodic in
the sense x− z ∈ Zd ⇒ U(x) = U(z), let Td = (R/Z)d, consider a cooling-schedule
(εt)t≥0 and the inhomogeneous Markov process Zε = (Xεt

t , Y
εt
t )t≥0 on Td × Sd−1

with generator

Ltf(x, y) = y.∇xf(x, y) +
(y.∇xU(x))+

εt
(f(x, y∗)− f(x, y))

+ r

(∫
f(x, z)dz − f(x, y)

)
. (1.6)

Recall the associated semi-group acts on probability laws P
(
Td × Sd−1

)
by

µPs,t = L ((Zt) | L ((Zs) = µ)) .

Let νt = e−
1
εt
U(x)dx× dy and

‖µ1 − µ2‖TV = inf
Z1∼µ1,Z2∼µ2

P (Z1 6= Z2)

be the total variation distance.

First we establish an exponential relaxation to equilibrium when the temperature
is fixed:

Theorem 1.4. There exist c, θ > 0 that depend only on d, r and U such that if
εt = ε > 0 is constant (so that P0,t = Pt is homogeneous and νt = ν0 for all t), for
all t ≥ 0 and all initial law µ

‖µPt − ν0‖TV ≤ e−ce
− θ
ε (t−

√
d) ‖µ− ν0‖TV .

Second we obtain a sufficient condition on a cooling schedule for the inhomo-
geneous process with generator given by (1.6) to converge on probability to any
neighbourhood of the set of global maxima of U :

Theorem 1.5. There exists θ > 0 that depends only on d and U such that the
following hold: let (εt)t≥0 be any positive decreasing cooling schedule that goes to 0
as t goes to infinity, and such that moreover for t large enough

∂t

(
1

εt

)
≤ 1

(θ + η)t
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for some η > 0. Then, for any h > 0 and for any initial point (X0, Y0) ∈ Td×Sd−1,

P (U (Xεt
t ) > minU + h) −→

t→∞
0.

In particular if εt = θ+η
ln t for t large enough, then there exists C > 0 such that for

all t, h > 0 and (X0, Y0) ∈ Td × Sd−1,

P (U (Xεt
t ) > minU + h) ≤ C

(
1

t

)min(h/2,η)
θ+η

.

There is no reason not to expect that the smallest θ such that Theorems 1.4 and
1.5 hold is E∗ the critical depth of the potential U (see the remark after the proof
of Theorem 1.4 concerning the explicit bound we get). We believe that a sharper
analysis, similar to our study in dimension 1 or to classical studies of the simulated
annealing based on the Fokker-Planck diffusion, together with some ideas from the
proof of Theorem 1.5 which are specific to the present process, could in fact enable
us to reach θ = E∗ (see the conclusive remark at the end of the paper). However we
also think that somehow the additional technicalities is not worth the improvement
of the result, at least in a first instance: indeed, in an applied problem, E∗ is anyway
unknown and out of reach.

The restriction to a compact space in Theorem 1.5, which simplifies the study,
should not be necessary. If for instance we suppose U goes to infinity as |x| → ∞
and εt → 0 then at some time the process will stay forever trapped in a compact
set, and the same arguments will work (the constant C however will depend on the
initial position). In Theorem 1.4 if U goes to infinity as |x| → ∞ we can prove
via Lyapunov techniques that the process always come back to a given compact
set, but since it moves at constant speed, ‖µPt − ν0‖TV will not be controlled by
‖µ− ν0‖TV uniformly on µ; some moments of µ will be involved to account for the
first hitting time of a given compact set.

Remark on the definition of the multidimensional process. We want to
define a process with the specifications of Section 1.2: (X,Y ) has to be a kinetic
Markov process on Rd × Sd−1 with a piecewise constant velocity. It remains to
choose the jump rate and kernel of Y with the constraint that the first marginal of
the invariant measure has to be the Gibbs law associated to some potential U .

Recall that in dimension 1 an asset of the velocity jump process with minimal
jump rate (yU ′(x))+ is that, in order to determine the next jump time, it is only
necessary to compute U(Xt) along the trajectory. In any dimension, this is still
true with the rate λ(x, y) = (y.∇U(x))+. Indeed in that case, while there is no
jump,∫ t

0

λ(Xs, Ys)ds =

∫ t

0

(∂s (U(Xs)))+ ds

=

{
0 while U(Xt) decreases with t
U(Xt)− U(X0) while U(Xt) increases with t,

and more generally it is the cumulated increases of U along the trajectory since the
last jump. Note that on the contrary, in the case of the Fokker-Planck diffusion,
∇U(Xt) should be estimated all the time, possibly at a huge numerical cost in large
dimension.
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This choice of jump rate yields a generator of the form

Lf(x, y) = y.∇xf(x, y) + (y.∇xU(x))+

(∫
Sd−1

f(x, z)px,y(z)σ(dz)− f(x, y)

)
with a transition kernel px,y(z) on Sd−1 which is still to be determined. Let ν =

e−U(x)dx×dy where dy is the uniform law on the sphere. In dimension greater than
1, this is an arbitrary - albeit the simplest - choice to ensure the first marginal of
ν is the Gibbs law associated to U . Then ν is invariant for L iff px,y(z) is a (weak)
solution of

y.∇xU(x) = (y.∇xU(x))+ −
∫
Sd−1

(z.∇xU(x))+ px,z(y)σ(dz)

for a.e. (x, y) ∈ Rd × Sd−1, or in other words∫
Sd−1

(z.∇xU(x))+ px,z(y)σ(dz) = (−y.∇xU(x))+ .

This is true if when Y jumps, the part Y.∇xU(X) is changed to its opposite. We
have complete freedom for the choice of what happens to the part of Y which is
orthogonal to ∇xU(X), as long as it stays orthogonal.

In particular the condition would be satisfied with px,y = δ−y, namely Y jumps
to −Y . But then Xt would be forever trapped on the same line, and the process
would not be ergodic. This could be fixed by adding uniform jumps of Y at a
constant rate, which leaves ν invariant, but then the trajectories would still seem
rather inefficient from a mixing point of view.

The choice px,y = δy∗ seems more natural. From a practical point of view, it
means that the process has more inertia than if we had chosen the kernel Y ← −Y .
However to sample the process, it is then necessary to estimate ∇xU at each jump
time; but this is still less than for a diffusion.

It is not exactly clear whether it is ergodic: if U is infinite outside an ellipse
and vanishes inside, then there is no randomness, the process is a deterministic
billiard and so even if its initial speed is uniformly distributed, it will stay in an
area defined by some caustic. If we add uniform jumps on the velocity at constant
rate r > 0, then obviously the process may reach any open set of Rd × Sd−1 with
positive probability.

All these considerations lead to the definition (1.6).

Outine of the paper. In the rest of the paper are proven the above results. Section 2
is concerned with the low-temperature regime for a double-well potential; Theorem
1.1 is proven, which introduces a discussion on the time scale of total variation and
Wasserstein convergence to equilibrium. The proof of Theorem 1.3, in inhomoge-
neous setting, is addressed in Section 3. Section 4 investigates the non-minimal
rate case, namely the case λ(x, y) > (yU ′(x))+. Finally, the multi-dimensional case
is addressed in Section 5, where Theorems 1.4 and 1.5 are proven.

2. Escape time at low temperature

In this section the dimension is 1, the temperature ε > 0 is fixed through time,
(Xε

t , Y
ε
t ) is the velocity jump process with generator L defined by (1.4); the double-

well potential U has three local extrema x0 < x1 < x2 such as described in the
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previous section in the settings of Theorem 1.1. Suppose (Xε
0 , Y

ε
0 ) = (x0,−1) and

recall that

τ = inf {t > 0, Xε
t = x1} .

We start the proof of Theorem 1.1 with the following Lemma:

Lemma 2.1. for δ > 0 small enough,∫ δ

0

t

ε
(−U ′(x0 − t)) e−

U(x0−t)−U(x0)
ε dt =

√
πε

2U ′′(x0)

(
1 + o

ε→0
(1)
)
.

Proof : ∫ δ

0

t

ε
(−U ′(x0 − t)) e−

U(x0−t)−U(x0)
ε dt

=

∫ δ√
ε

0

s
(
−U ′(x0 −

√
εs)
)
e−

U(x0−
√
εs)−U(x0)
ε ds

=
√
ε

∫ ∞
0

fε(s)ds

with

fε(s) =
s (−U ′(x0 −

√
εs))√

ε
e−

U(x0−
√
εs)−U(x0)
ε 1s≤δ/

√
ε.

On the one hand

fε(s) −→
ε→0+

s2U ′′(x0)e−
U′′(x0)

2 s2

and on the other hand, writing M = sup
t∈[0,δ]

|U (3)(t)|,

|fε(s)| ≤ s2

(
U ′′(x0) +

δM

2

)
e−

U′′(x0)
2 s2+ δs2M

6 .

As M decreases with δ, for δ small enough, δM < 3U ′′(x0). Thus by the dominated
convergence theorem∫ ∞

0

fε(s)ds −→
ε→0

∫ ∞
0

s2U ′′(x0)e−
U′′(x0)

2 s2ds

=

√
π

2U ′′(x0)
.

�

Proof of Theorem 1.1: The strategy of this proof is quite simple: starting at (x0,−1),
the process starts to climb to the left. After a time with bounded expectation (since
the potential is increasing and convex along the trajectory), it turns back, reaches
(x0, 1) and start to climb toward x1. If it reaches x1 then this attempt to escape is a
success. If not, it goes back to (x0,−1), and starts anew. Since the duration of the
last (and successful) attempt is negligible with respect to the expected duration of
a failed attempt (of order

√
ε according to Lemma 2.1) times the expected number

of failed attempts, conclusion follows from the usual convergence of geometrical
laws to the exponential one.

More precisely let θ0 = 0, and for all k ∈ N set

θ̃k = min (inf {t > θk, (Xt, Yt) = (x0, 1)} , τ) ,
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θk+1 = min
(

inf
{
t > θ̃k, (Xt, Yt) = (x0,−1)

}
, τ
)
.

We also define N = max {k, θk < τ}, so that

τ = τ − θN +

N∑
k=1

(θk − θk−1).

Conditionally on N ≥ k, θk − θk−1 is the length of a failed attempt to reach x1; it
has the same law as θ1, given N ≥ 1, and is independent from N . In particular

E [τ ] = E [τ − θN ] + E [N ]E [θ1 | N ≥ 1] , (2.1)

and N is a geometric variable with parameter

qε = P (εE > U(x1)− U(x0))

= e−
U(x1)−U(x0)

ε

(and so with expectation E [N ] = q−1
ε ). Now we decompose

E [θ1 | N ≥ 1] = 2E

[
θ̃0

2

]
+ 2E

[
θ1 − θ̃0

2

∣∣∣∣∣ N ≥ 1

]
. (2.2)

Notice that θ̃0
2 is the jump time starting from (x0,−1), which is independent from

N and whose law has density 1
ε (−U ′(x0 − t)) e−

U(x0−t)−U(x0)
ε . If ε < 1

2 , then for
any δ > 0

E

[
θ̃0

2
1 θ̃0

2 >δ

]
=

∫ ∞
δ

t

ε
(−U ′(x0 − t)) e−

U(x0−t)−U(x0)
ε dt

≤
∫ ∞
δ

t

ε
(−U ′(x0 − t)) e−

U(x0−t)−U(x0)
2ε −U(x0−δ)−U(x0)

2ε dt

≤ e−
U(x0−δ)−U(x0)

2ε

ε

∫ ∞
δ

t (−U ′(x0 − t)) e−(U(x0−t)−U(x0))dt

= o
ε→0

(
√
ε).

On the other hand thanks to Lemma 2.1, for δ small enough,

E

[
θ̃0

2
1 θ̃0

2 <δ

]
=

√
πε

2U ′′(x0)

(
1 + o

ε→0
(1)
)
.

If δ < x1 − x0, Lemma 2.1 also applies to θ1−θ̃0
2 , and since P(N ≥ 1) goes to 1,

E

[
θ1 − θ̃0

2
1 θ1−θ̃0

2 <δ

∣∣∣∣∣N ≥ 1

]
=

√
πε

2U ′′(x0)

(
1 + o

ε→0
(1)
)
.

Furthermore

E

[
θ1 − θ̃0

2
1 θ1−θ̃0

2 ≥δ

∣∣∣∣∣ N ≥ 1

]
≤ (x1 − x0)

P
(
θ1−θ̃0

2 ≥ δ
)

P(N ≥ 1)

= o
ε→0

(
√
ε).
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By combining the estimates above with (2.2) we get

E [θ1 | N ≥ 1] =

√
8πε

U ′′(x0)

(
1 + o

ε→0
(1)
)
.

Besides, note that θ̃N−θN
2 has the same law as θ̃0

2 , so that

E [τ − θN ] = 2E

[
θ̃N − θN

2

]
+ x1 − x0 = O

ε→0
(1) = o

ε→0

(√
εq−1
ε

)
,

and finally Equality (2.1) becomes

E [τ ] =

√
8πε

U ′′(x0)
e
U(x1)−U(x0)

ε

(
1 + o

ε→0
(1)
)
.

Now as far as the second assertion of the theorem is concerned,

P (τ ≥ tE [τ ])

=P

(
τ − θN +

N∑
k=1

(θk − θk−1) ≥ tE [τ ]

)

=P

(
E [N ]E [θ1 | N ≥ 1]

E [τ ]

N

E [N ]

(
τ − θN

NE [θ1 | N ≥ 1]
+

N∑
k=1

θk − θk−1

NE [θ1 | N ≥ 1]

)
≥ t

)
.

First, N
E[N ] converges in law to an exponential variable of parameter 1. Second,

if the times of jump of the process are defined by the same sequence (Ek)k≥0 of

exponential variables (according to Equality (1.3)) for all ε, then the processes at
different temperatures are all defined at once on the same probability space, and
in this case

N = min{k ≥ 0, εE2k > U(x1)− U(x0)}
almost surely goes to infinity. Thanks to the law of large numbers,

τ − θN
NE [θ1 | N ≥ 1]

+

N∑
k=1

θk − θk−1

NE [θ1 | N ≥ 1]
−→
ε→0

1 a.s.

At last E[N ]E[θ1 | N≥1]
E[τ ] −→

ε→0
1. As a conclusion τ

E[τ ] converges to an exponential

law. �

This result yields a lower bound on the total variation distance between

νt = L (Xε
t , Y

ε
t | Xε

0 = x0, Y
ε
0 = −1)

and the invariant measure µε. We recall that the total variation distance between
two laws ν, ν̃ on a topological space W is defined by

‖ν − ν̃‖TV = sup
A∈B(W )

|ν(A)− ν̃(A)|

where B(W ) is the Borel σ-algebra on W .

Corollary 2.2. In the setting of Theorem 1.1, assume furthermore U(x2) < U(x0).
For any t > 0, writing tε = tE [τ ],

lim inf
ε→0

‖νtε − µε‖TV ≥ e−t.
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Proof : The assumption U(x2) < U(x0) implies that the first marginal of µε con-
centrates near the unique global minimum of U , x2. In particular

µε [(x1,∞)× {±1}] −→
ε→0

1.

However

νt [(x1,∞)× {±1}] ≤ P (τ ≤ t) .
As a consequence

‖νtε − µε‖TV ≥ (µε − νtε) [(x1,∞)× {±1}]
≥ µε [(x1,∞)× {±1}]− P (τ ≤ tE [τ ])

−→
ε→0

e−t.

�

We will now give a more precise result concerning the first marginal and the
Wasserstein distance

W (ν1, ν2) = sup
π

Eπ [|Z1 − Z2|] ,

where the infimum is taken over all probability measures π on R2 whose first (resp.
second) marginal is ν1 (resp. ν2). We start with the following lemma (recall that
we fixed (Xε

0 , Y
ε
0 ) = (x0,−1)) :

Lemma 2.3. Let t > 0. Then

lim sup
ε→0

E
[
(Xε

tε)
2
]
<∞.

Proof : Let M > U(x1), and for all k ≥ 0 let

sk = inf{s > 0, U(Xε
s ) > M + k}.

From Theorem 3.2 (stated and proved in the next section) we get that for all k ≥ 0,
there exist Γ, ε0 > 0 such that for all ε ≤ ε0 and all t > 0,

P (sk ≤ tε) ≤ 1− exp

(
−Γ

(
e−

M+k
ε + tε

e−
M+k−U(x2)

ε

√
ε

))
≤ 1− exp

(
−Γ̃e−

M+k
ε0

)
,

where Γ̃ depends on t but not on ε. In fact, since we consider here escape times
from nested intervals, and from the convexity of U outside of a compact, Γ (and

hence Γ̃) and ε0 can be chosen uniformly over k (see the remark at the end of the
proof of Theorem 3.2). Noticing that U−1(v) = sup{|x|, U(x) ≤ v} is sub-linear,
we write

E
[
(Xε

tε)
2
]
≤

(
U−1(M)

)2
+
∑
k≥0

(
U−1(M + k + 1)

)2 P (sk ≤ tε)

≤
(
U−1(M)

)2
+
∑
k≥0

(
U−1(M + k + 1)

)2 (
1− exp

(
−Γ̃e−

M+k
ε0

))
≤

(
U−1(M)

)2
+ Γ̃

∑
k≥0

(
U−1(M + k + 1)

)2
e−

M+k
ε0

which is finite.
�
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Let mt = e−tδx0
+ (1− e−t)δx2

and ht be the first marginal of νt, namely

ht = L (Xε
t | Xε

0 = x0, Y
ε
0 = −1) .

Theorem 2.4. In the setting of Theorem 1.1, assume moreover U(x2) < U(x0).
Then for any t > 0, writing tε = tE [τ ],

W (htε ,mt) −→
ε→0

0.

Proof : Consider (Xε
t , Y

ε
t )t≥0 a trajectory of the process, from which we will define

a variable W of law mt. In the first instance assume pε := P (τ ≥ tε) ≤ e−t. If

τ ≥ tε, set U = 1. Else set U = 1 with probability e−t−pε
1−pε , and else set U = 0.

Similarly in the case where pε ≥ e−t, if τ ≤ tε, set U = 0, and else set U = 0 with

probability pε−e−t
pε

, and else set U = 1.

Either ways, U is a Bernoulli variable with parameter e−t such that

P (U = 1τ≥tε) = 1− |e−t − pε| −→
ε→0

1.

We naturally set W = Ux0 + (1− U)x2. The Cauchy-Schwarz inequality

E
[
|Xε

tε −W |1U 6=1τ≥tε
]
≤
√
E
[
|Xε

tε −W |2
]
P (U 6= 1τ≥tε),

together with Lemma 2.3, yields

E
[
|Xε

tε −W |
]

= E
[
|Xε

tε −W |1U=1τ≥tε

]
+ o
ε→0

(1).

We write

τ (2) = inf {t > τ, Xε
t < x1} ,

and remark that τ (2) − τ , which is independent from τ , is the first hitting time of
(x1,−1) starting from (x2, 1): from Theorem 1.1, and since U(x2) < U(x1), we see

that E [τ ] is negligible with respect to E
[
τ (2) − τ

]
, that τ(2)−τ

E[τ(2)−τ]
converges in law

to an exponential variable and so that τ(2)−τ
E[τ ] diverges in probability to infinity. In

particular

P
(
τ (2) ≥ tε

)
≥ P

(
τ (2) − τ ≥ tε

)
−→
ε→0

1.

Using again Lemma 2.3, we get

E
[
|Xε

tε −W |
]

= E
[
|Xε

tε −W | 1U=1τ≥tε , τ
(2)>tε

]
+ o
ε→0

(1)

= E
[
|Xε

tε − x0| 1tε<τ
]

+ E
[
|Xε

tε − x2| 1τ<tε<τ(2)

]
+ o
ε→0

(1).

Both expectations are treated the same way, let us focus on the first one. Suppose
tε < τ and let

t′ = sup{s < tε, X
ε
s = x0}, t′′ = min (inf{s > tε, X

ε
s = x0}, τ) ,

and I = t′′ − t′. Note that |Xε
tε − x0| < I and for 0 ≤ a ≤ b the following events

are included:
{a ≤ I < b} ⊂ A,

where

A =
{
∃s1, s2 ∈ [tε − b, tε + b], s1 < s2, X

ε
s1 = x0, |Xε

s2 − x0| =
a

2

}
.
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Since the process starts anew when it reaches x0,

P(A) ≤ PX0=x0

(
∃s < 2b, |Xε

s − x0| =
a

2

)
≤ P (θ(a) ≤ 2b) ,

where

θ(a) = inf {s > 0, U(Xε
s ) > U(x0) + δ(a)}

and δ(a) = min
(
U
(
x0 −

a

2

)
, U
(
x0 +

a

2

))
− U(x0) if x0 +

a

2
≤ x1

= U
(
x0 −

a

2

)
− U(x0) else.

In other words, δ(a) is the minimal energy barrier to overcome to be at distance at
least a

2 from x0 (when the process is still in the catchment area of x0). If a ≤ I < b,
such a distance has been attained, and it has been so in a prescribed time window
of length at most 2b. As in the proof of Lemma 2.3 we use Theorem 3.2 to control
the probability to reach a given energy level in a given time: for all k ≥ 0 and
ε < ε0,

P (θ(a) ≤ 2b) ≤ 1− exp

(
−Γ

(
e−

δ(a)
ε + 2b

e−
δ(a)
ε

√
ε

))
≤ Γ

(
1 + 2bε−

1
2

)
e−

δ(a)
ε .

By combining the estimates above, when ε < 1,

E [|Xtε − x0| 1tε<τ ]

≤E [I 1tε<τ ]

≤
∑

0≤k≤
⌈
ε−

1
2

⌉
√
ε(k + 1)P

(
k
√
ε ≤ I < (k + 1)

√
ε
)

+
∑
k≥1

(k + 1)P (k ≤ I < (k + 1))

≤4Γ
√
ε

∑
0≤k≤

⌈
ε−

1
2

⌉(k + 1)2e−
δ(k
√
ε/2)
ε + 4Γ

∑
k≥1

(k + 1)2ε−
1
2 e−

δ(k)
ε .

(2.3)

From the convexity of U , δ(k) grows faster than linearly, so that, if ε0 is such that

ε 7→ ε−
1
2 e−

δ(1)
ε

is non-increasing on (0, ε0), for all ε < ε0,∑
k≥1

(k + 1)2ε−
1
2 e−

δ(k)
ε <

∑
k≥1

(k + 1)2ε
− 1

2
0 e−

δ(k)
ε0 <∞.

Thus, by the dominated convergence Theorem, the second sum in (2.3) vanishes
as ε goes to 0. As far as the first sum is concerned, note that, since x0 is a non-
degenerated minimum of U , there exist η > 0 such that δ(s) ≥ ηs2 for all s ∈ [0, 1].
This implies ∑

0≤k≤
⌈
ε−

1
2

⌉(k + 1)2e−
δ(k
√
ε/2)
ε ≤

∑
k≥0

(k + 1)2e−ηk
2

<∞.
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By inserting this estimate in (2.3), E
[
|Xε

tε − x0| 1tε<τ
]

goes to 0; the same goes for

E
[
|Xε

tε − x2| 1τ<tε<τ(2)

]
by a similar argument, and we conclude that E

[
|Xε

tε−W |
]

goes to 0. For ε small enough one can thus find a coupling (X,W ) with marginal
laws L

(
Xε
tε

)
and e−tδx0

+(1−e−t)δx2
such that E [|X −W |] is arbitrarily small. �

In particular since µ1
ε = e−

1
εU(x)dx, the first marginal of the invariant measure

µε, converges to the Dirac mass on x2, and

W
(
e−tδx0 + (1− e−t)δx2 , δx2

)
= e−t|x2 − x0|,

we get

Corollary 2.5. In the setting of Theorem 2.4,

W
(
htε , µ

1
ε

)
−→
ε→0

e−t|x2 − x0|.

3. NS conditions for the cooling schedule

We now turn to the study of the inhomogeneous velocity jump process
(Xεt

t , Y
εt
t )t≥0 on R× {−1,+1} with generator

Ltf(x, y) = yf ′(x, y) +
1

εt
(yU ′(x))+ (f(x,−y)− f(x, y)) ,

when Assumption 1 holds, which is supposed in the whole Section 3. To lighten
the notations, in this section we drop the εt exponent and only call the process
(Xt, Yt)t≥0.

It can be explicitly constructed in the same manner as the homogeneous process
of Section 1.2, except that the definition (1.3) of the jump times is now replaced by

Ti+1 = inf

{
t > Ti,

∫ t

Ti

(YTiU
′ (XTi + YTi(s− Ti)))+

εs
ds ≥ Ei

}
.

In a finite time interval [0, T ], εt is bounded by εT and thus there cannot be an
infinite number of jumps in a finite time. In particular the sequence of (Ti)i≥0 goes
to infinity and the process is well defined at all times.

Our method to prove Theorem 1.3 follows the work of Hajek (1988) on simulated
annealing on a discrete space. We consider a smooth Morse potential U on R with
a finite number of local extrema, and convex at infinity. If x is a minimum of depth
E, denote by Cx the set of all points which are reachable from x at height strictly
less than E. We call Cx the cusp of x (see the grey area of Figure 1.1).

More generally we call cusp an interval C = (zl, zr) with U(zl) = U(zr) and for
all x ∈ C, U(x) < U(zl). The depth d of C is defined as

d = U(zl)−min{U(x), x ∈ C}.
We denote by B = {z ∈ C,U(z) = min{U(x), x ∈ C}} the bottom of the cusp.
Note that a minimum x is always in the bottom of Cx, and that conversely if z is
in the bottom of Cx then Cx = Cz. Obviously the depth of Cx equals the depth of
x.

We want to bound the time the process spends in a cusp C, depending on the
depth d of the latter. Nevertheless it is impossible to do so if we only assume the
initial position is in C: we should put aside the cases where the process starts near
the boundary of C, with a velocity directed toward the exit.
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We denote by N the set of local extrema of U in C, and

u = U(zl)−max{U(z), z ∈ N}.

The maximum over N is necessarily attained on a local maximum, except when
there is no local maximum between zl and zr, in which case N is a single point,
which is a local minimum, and u = d. We define

xl = inf{x ∈ C,U(zl)− U(x) ≥ u} xr = sup{x ∈ C,U(zr)− U(x) ≥ u},

and

AC = (zl, xl)× {−1} ∪ (xr, zr)× {1} ⊂ R× {±1}.

The process can only leave C from AC , and can only enter it through ĀC =
(C × {±1}) r AC . We will note AC(t) (resp. ĀC(t)) the event (Xt, Yt) ∈ AC
(resp. ĀC).

Let t0 > 0 and

τC = inf{t > t0, Xt /∈ C}.

In order to prove Theorem 1.3, we will establish the two following intermediate
results:

Theorem 3.1. Let C be a cusp of depth d. There exist ε0, c > 0 such that for
all time t0 > 0, any z ∈ {zl, zr} and all cooling schedule t 7→ εt, if ĀC(t0) holds,
εt0 ≤ ε0 and ∫ ∞

t0

(εs)
− 1

2 e−
d
εs ds =∞,

then

E
[∫ τC

t0

(εs)
− 1

2 e−
d
εs ds

]
≤ c, (3.1)

P (XτC = z) ≥ 1

c
. (3.2)

Theorem 3.2. Let C be a cusp of depth d. There exist Γ, ε0 > 0 such that for all
times t0 > 0, r ≥ t0 and all cooling schedule t 7→ εt, if ĀC(t0) holds and εt0 ≤ ε0

then

P (τC ≥ r) ≥ exp

−Γ

e− d
εt0

√
εt0

+

∫ r

t0

e−
d
εu

√
εu
du

 .

Note that contrary to Theorem 1.3, these intermediate results do not require the
temperature to go to zero. In particular they hold for constant ε.

3.1. Theorem 3.1. The proof is based on an induction over the number of local
minima that are contained in the cusp C. Thus we start with a cusp that contains
only one minimum, and so no maximum.
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3.1.1. A simple cusp. We fix throughout this section a cusp C of depth d with only
one local minimum x0 of U . Note that in this case u = d, and xl = xr = x0. We
will prove Theorem 3.1 in this situation, which is pretty similar to the settings of
Section 2. Let τ0 = t0 and

τi+1 = min (inf{t > τi, Xt = x0}, τC) .

We first prove:

Lemma 3.3. There exists c1 and ε0 > 0 such that for all εt0 ≤ ε0, for all i ≥ 1,

E
[
τi+1 − τi| ĀC(τi), τi

]
≤ c1
√
ετi .

Proof : At time τi, i ≥ 1, given ĀC(τi), the position Xτi is x0 and the velocity Yτi
is either 1 or -1. Writing

E
[
τi+1 − τi| ĀC(τi), τi

]
= E

[
E
[
τi+1 − τi| ĀC(τi), τi, Yτi

]∣∣ ĀC(τi), τi
]
,

both cases Yτi = −1 or 1 are treated the same way. For instance

E [τi+1 − τi| τi, (Xτi , Yτi) = (x0,−1)] =

P (τi+1 = τC |τi, (Xτi , Yτi) = (x0,−1)) |x0 − zl|
+ E

[
(τi+1 − τi)1τi+1 6=τC

∣∣ τi, (Xτi , Yτi) = (x0,−1)
]
.

Since the cooling schedule is non-increasing, the probability to reach the boundary
and the expectation of the time of jump are bounded by the corresponding quan-
tities at constant temperature ετi . Indeed, if E ∼ E(1), conditionally on τi and to
(Xτi , Yτi) = (x0,−1),

P (τi+1 = τC) = P
(
E ≥

∫ x0−zl

0

U ′(x0 − s)
ετi+s

ds

)
≤ P

(
E ≥ 1

ετi

∫ x0−zl

0

U ′(x0 − s)ds
)

= e
− d
ετi

and

E
[
(τi+1 − τi)1τi+1 6=τC

]
= 2

∫ x0−zl

0

P
(
τi+1 − τi

2
≥ u

)
du

= 2

∫ x0−zl

0

P
(
E ≥

∫ u

0

U ′(x0 − s)
ετi+s

ds

)
du

≤ 2

∫ x0−zl

0

P
(
E ≥ 1

ετi

∫ u

0

U ′(x0 − s)ds
)
du

= 2

∫ x0−zl

0

sU ′(x0 − s)
ετi

e
−U(x0−s)−U(x0)

ετi ds.

Thanks to Lemma 2.1 there exist ε0 and c1 such that for all ε ≤ ε0,

e−
d
ε |x0 − zl|+ 2

∫ x0−zl

0

sU ′(x0 − s)
ε

e−
U(x0−s)−U(x0)

ε ds ≤ c1
√
ε,

which concludes the proof since ετi ≤ εt0 ≤ ε0. �
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Proof of Part (3.1) of Theorem 3.1 for a simple cusp:
By choosing ε0 small enough, for all cooling schedule εt ≤ ε0, the map

s 7→ (εs)
− 1

2 e−
d
εs

is non-increasing, so that

E
[∫ τi+1

τi

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣ τi, ĀC(τi)

]
≤ (ετi)

− 1
2 e
− d
ετi E

[
τi+1 − τi| τi, ĀC(τi)

]
≤ c1e

− d
ετi .

We define

Φ(i, j) = E
[∫ τj

τi

(εs)
− 1

2 e−
d
εs 1s<τCds

∣∣∣∣ τi−1, ĀC(τi−1)

]
.

Obviously Φ(j, j) = 0; suppose Φ(i + 1, j) ≤ c1 has already been proved for some
i < j. Under the event ĀC(τi−1), there are two possibilities: either the process
escapes the cusp C between the times τi−1 and τi, in which case τi = τC = τj and
the integral appearing in the definition of Φ(i, j) vanishes; or the attempt to exit
C between τi−1 and τi fails and the process returns to Xτi = x0. To sum up,

Φ(i, j) = P
(
τi < τC | τi−1, ĀC(τi−1)

)
E
[∫ τj

τi

(εs)
− 1

2 e−
d
εs 1s<τCds

∣∣∣∣ τi−1, ĀC(τi)

]
≤
(

1− e
− d
ετi−1

)
×

E
[
E
[ ∫ τi+1

τi

(εs)
− 1

2 e−
d
εs 1s<τCds

∣∣∣∣ τi, ĀC(τi)

]
+ Φ(i+ 1, j)

∣∣∣∣ τi−1

]
≤
(

1− e
− d
ετi−1

)
E
[
c1e
− d
ετi + c1

∣∣∣ τi−1

]
≤
(

1− e
− d
ετi−1

)(
c1e
− d
ετi−1 + c1

)
≤ c1.

This proves by induction that Φ(1, j) ≤ c1 for all j ≥ 1. As was already pointed
out there can only be a finite number of jumps in a finite time, so that the sequence
(τi)i≥0 almost surely converges to τC (which, at this point, may be infinite). The
monotone convergence theorem yields

E
[∫ τC

τ1

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣ ĀC(t0)

]
≤ c1.

On the other hand, as soon as εt ≤ ε0,

E
[∫ τ1

t0

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣ ĀC(t0)

]
≤ (ε0)

− 1
2 e−

d
ε0 max (|x0 − zl|, |zr − x0|) .

Bringing all the pieces together, there exists a constant c > 0 such that

E
[∫ τC

t0

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣ ĀC(t0)

]
≤ c.

�

Note that if the cooling schedule is such that
∫∞
t0

(εs)
− 1

2 e−
d
εs ds = ∞, this first

result implies that τC is almost surely finite, in which case (XτC , YτC ) is well defined,
and the second half of Theorem 3.1 makes sense.



Piecewise deterministic simulated annealing 377

Proof of Part (3.2) of Theorem 3.1 for a simple cusp: We note pli (resp. pri ) the
probability to exit C in one shot, meaning before reaching again x0, starting at
(Xτi , Yτi) = (x0,−1) (resp. (x0, 1)), with XτC = zl (resp. zr). Namely, if E ∼ E(1),

pli = P
(∫ x0−zl

0

1

ετi+s
U ′(x0 − s)ds ≤ E

)
pri = P

(∫ zr−x0

0

1

ετi+s
U ′(x0 + s)ds ≤ E

)
.

Since the cooling schedule is not-increasing,

e
− d
ετi+1 ≤ pli, pri ≤ e

− d
ετi .

In particular pli ≥ pri+1, which means that between two consecutive attempts to
exit the cusp, the second one is always less likely to succeed than the first one, and
thus if (Xτi , Yτi) = (x0,−1) then the probability that the exit point will be zl is
greater than 1

2 . On the other hand,

P (XτC = zl | (Xτ1 , Yτ1) = (x0, 1)) = (1− pr1)P (XτC = zl | (Xτ2 , Yτ2) = (x0,−1))

≥ 1

2

(
1− e−

d
εt0

)
.

Under the event ĀC(t0), necessarily τ1 < τC , in other words Xτ1 = x0 and Yτ1 is
either 1 or -1. Since the previous arguments cover both cases, as soon as εt0 ≤ ε0,

P
(
XτC = zl | ĀC(t0)

)
≥ 1

2

(
1− e−

d
ε0

)
.

The case of zr is symmetric. �

3.1.2. Induction. In this section we consider a general cusp of depth d and we prove
Theorem 3.1 under the induction assumption that it holds for any cusp with strictly
fewer local maxima than C. There is a finite number of maxima z in C for which
u = U(zl)−U(z), and each connected component of (xl, xr)r{z, u = U(zl)−U(z)}
is a cusp of depth at most g = d− u (cf. Fig. 3.3). We call (Ci)i=1..n these cusps
of depth g. We can consider ε0 and M such that for all εt ≤ ε0, for all i = 1, . . . , n,
for all zi which is an end of Ci and for all t0,

P
(
XτCi

= zi
∣∣ ĀCi(t0)

)
≥ 1

M

and E
[∫ τCi

t0

(εs)
− 1

2 e−
g
εs ds

∣∣∣∣ ĀCi(t0)

]
≤ M

⇒ E
[∫ τCi

t0

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣ ĀCi(t0)

]
≤ Me

− u
εt0 .

Proof of Theorem 3.1, part (3.1): Set J0 = t0 and define Ki, Ji for i ≥ 1 by

Ki = min (inf{t > Ji−1, AC(t)}, τC)

Ji = min
(
inf{t > Ki, ĀC(t)}, τC

)
.

At time Ki, the process is ready to escape: it is located near the boundary of C,
and its velocity is directed toward the exit. At time Ji, if it failed to leave the cusp,
it goes back to the Cj ’s (see Fig. 3.3) and, as previously,

Φ(i, j)
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Figure 3.3. The cusp C is divided in several smaller cusps.

:= E

[∫ Kj

Ki

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣∣Ki−1, τC > Ki−1

]

= P (τC > Ki|Ki−1, τC > Ki−1)E

[∫ Kj

Ki

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣∣Ki−1, τC > Ki

]

≤
(

1− e
− u
εKi−1

)
E

[∫ Ji

Ki

+

∫ Ki+1

Ji

+

∫ Kj

Ki+1

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣∣Ki−1, τC > Ki

]
.

We treat the three parts of the integral one after another. From Lemma 3.3, there
exists a constant c1 (depending on C but not on (εt)t≥t0) such that

E

[∫ Ji

Ki

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣∣Ki, τC > Ki

]
≤ c1e

− u
εKi .

As far as the time interval [Ji,Ki+1] is concerned, we distinguish the following
cases: if Ji = τC , the process has escaped from C, hence Ki+1 = τC and the
integral vanishes. Otherwise the process goes back down to a cusp Ci, and then for
a while pass from a Cj to another, until it reaches AC again. The contribution of
the time passed in each Ci to the integral can be controlled thanks to the induction
assumption. It remains to make sure the number of transitions between the Cj ’s
before existing is not too large. When the process exits Ci, the probability it does so
through a given end is bounded below thanks to the induction assumption. Thus
the expectation of the number N of jumps from a Ci to another Cj before the
process reaches AC is bounded by a constant D which does not depend on the
cooling schedule. Hence, denoting by τ∗Ci an entry time of the process in Ci,

E

[∫ Ki+1

Ji

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣∣Ki, τC > Ki

]

≤ E

[
Nmax

i
E

[∫ τCi

τ∗Ci

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣∣ τ∗Ci > Ki, ĀCi
(
τ∗Ci
)]∣∣∣∣∣Ki, τC > Ji

]
≤ DMe

− u
εKi .
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Since Φ(j, j) = 0, as an induction assumption we can suppose

Φ(i+ 1, j) ≤ DM + c1,

and thus we get

Φ(i, j) ≤
(

1− e
− u
εKi−1

)
E
[
e
− u
εKi (DM + c1) + Φ(i+ 1, j)

∣∣∣Ki−1, τC > Ki

]
.

≤
(

1− e
− u
εKi−1

)(
e
− u
εKi−1 + 1

)
(DM + c1)

≤ DM + c1.

The monotone convergence Theorem yields

E
[∫ τC

K1

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣ ĀC(t0)

]
≤ DM + c1.

On the other hand in the event ĀC(t0), either the process start in a Ci, or it reaches
a Ci in a time bounded by max(|xl−zl|, |zr−xr|). In both cases with the previous
argument we used for [Ji,Ki+1],

E

[∫ K1

t0

(εs)
− 1

2 e−
d
εs ds

∣∣∣∣∣ ĀC(t0)

]
≤ DM + (εt0)

− 1
2 e
− d
εt0 max (|xl − zl|, |zr − xr|),

and ultimately part (3.1) of Theorem 3.1 is proved with

c = 2DM + c1 + (εt0)
− 1

2 e
− d
εt0 max (|xl − zl|, |zr − xr|).

�

The same remark as in Section 3.1.1 holds: when
∫∞
t0

(εs)
− 1

2 e−
d
εs ds = ∞, the

first part of Theorem 3.1 implies that τC is almost surely finite, and XτC well-
defined.

Proof of Theorem 3.1, part (3.2): The situation is very similar to the simple cusp
one. Take M ′0 = t0 and

Mi = min (inf{t > M ′i , AC(t)}, τC)

M ′i+1 = min
(
inf{t > Mi, ĀC(t)}, τC

)
.

Given the sequence (Mi)i≥1, (XMi
)i≥1 is an inhomogeneous Markov chain on the

set {zl, xl, xr, zr}. Let

pli = P
(∫ xl−zl

0

1

εMi+s
U ′(x0 − s)ds ≤ E

)
,

pri = P
(∫ zr−xr

0

1

εMi+s
U ′(x0 + s)ds ≤ E

)
.

The induction assumption on the Cj ’s implies that the transitions of this chain from
xr to xr and vice-versa are bounded below by a constant h > 0 which does not
depend on the cooling schedule. Hence (XMi

)i≥1 is more likely to reach zl before

zr than the chain (X̃Mi
)i≥1 with transition

P(xl → xr) = 1− pli P(xr → xl) = h
P(xl → zl) = pli P(xr → zr) = pri
P(xl → xl) = 0 P(xr → xr) = 1− h− pri .
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Similarly to the situation in Section 3.1.1, pli ≥ prj if j > i, and pr1 ≤ e−
u
ε0 . The

probability that X̃, starting from X̃Mi+1 = xr, hits zr before xl is∑
j≥1

pri+j
∏

1≤k<j

(1− h− prk) ≤
∑
j≥1

pri+1(1− h)j−1 ≤ pli
1− h

.

In particular this is less than e
− u
ε0

1−h , so that the probability that there exist k0 ≥ 0

such that X̃Mk0
= xl is bounded below. Hence to bound the probability to reach

zl before zr we can assume the initial point is xl. Let

ki+1 = inf {n > ki, X̃Mn
6= xr}.

Given the times (Mki), the chain X̃ is more likely to reach zl before zr than the
chain X ′ with transition

P(xl → zl) = plki P(xl → zr) =
plki

1− h
P(xl → xl) = 1− plki −

plki
1− h

.

Finally, X ′ goes to zl rather than zr with a probability 1
1+ 1

1−h
, which does not

depend on the cooling schedule, which concludes. �

3.2. Theorem 3.2. We start by some preliminary lemmas. Let C be a cusp of depth
d, recall that its bottom is B = {x ∈ C,U(z) ≥ U(x) ∀z ∈ C} and let xb = minB.
We will give an upper bound of the probability that the process, starting at time
t0 at point (xb,−1), reaches zl before (xb, 1). Obviously, if there were no local

maximum between xb and zl, this probability would be bounded by e
− d
εt0 . To

prove a similar bound in more general cases, we decompose C in the following way:
let

J = {x ∈ [zl, xb], s.t. ∀z ∈ (x, xb], U(z) < U(x)}.
On the set J , U is non-increasing, and the connected component of the closure of
[zl, xb]rJ are cusps whose right end are local maxima. We call u1 > u2 > · · · > uq
this local maxima, C1, . . . , Cq−1 the corresponding cusps, u0 = xb, C0 = {xb},
uq+1 = zl and Cq+1 = {zl}. The point of taking the connected component of the
closure of [zl, xb] r J was to ensure U(ui) > U(uj) if i > j. We say U(ui) is the
energy level of Ci, denoted by Ei, and we note

δi = Ei+1 − Ei.

Note that
∑q
i=0 δi = Eq+1 − E0 = d. The situation is represented in Figure 3.4.

Let t0 > 0, 1 ≤ i < q and suppose ĀCi(t0) holds. Let

s = inf{t > t0 s.t. ∃j 6= i, Xt ∈ Cj}.

Lemma 3.4. There exists c2 > 0 which depends on C but not on the cooling
schedule so that if ĀCi(t0) holds,

P (U(Xs) = Ei+1) ≤ c2e
− δi
εt0 . (3.3)

Proof : Since there is a finite number of cusps Ci, it is enough to show such a
constant exists for any one of them. Starting from ACi , if the process exits Ci to
the right, it will deterministically falls down to Ci−1, which means U(Xs) = Ei−1.
If the process exits to the left, it reaches Ci+1 in one shot with probability less than
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Figure 3.4. If the light comes from the right, J , in bold line, is
the sunny part, and the Ci’s are in the shadow.

e
− δi
εt0 , else goes back down to ĀCi . Since the probability the process escapes to the

left, starting from ĀCi , is bounded by a constant h > 0 thanks to Theorem 3.1,

P (U(Xs) = Ei+1) ≤
∑
k≥0

(1− h)ke
− δi
εt0 =

e
− δi
εt0

1− h
.

�

Remark: The constant c2 is defined from h, which depends only on the Ci’s.
Thus If (Dl)l≥0 is a family of nested cusps such that for all k ≥ 0 all the minima
of Dk belongs to

⋂
l≥0

Dl, the constant c2 may be defined uniformly on k so that (3.3)

holds for all Dk’s. Since q (the number of small cusps) is also the same for all
Dk’s, this remark will extend to the next result.

This lemma implies the process, starting from ĀCi , is less likely to hit (zl,−1)
before (x0, 1) than the birth-death process (Wn)n≥0 on [0, q + 1] with transition
probabilities

P(j → j + 1) = c2e
−
δj
εt0 , P(j → j − 1) =

(
1− c2e

−
δj
εt0

)
, j ∈ {1, ..., q},

is to hit q + 1 before 0, starting at i.

Lemma 3.5. For εt0 small enough,

P (W hits q + 1 before 0 | W0 = 1) ≤ (2c2)
q
e
−
Eq+1−E1

εt0 .

As a consequence,

P
(
X hits zl before xb | ĀC1

(t0)
)
≤ (2c2)

q
e
−
Eq+1−E1

εt0

and

P ((X,Y ) hits (zl,−1) before (xb, 1) | (Xt0 , Yt0) = (xb,−1)) ≤ (2c2)
q
e
− d
εt0 .

Proof : More generally, let

ri = P (W hits q + 1 before i− 1 | W0 = i) .



382 P. Monmarché

If W hits q before i − 1, necessarily W1 = i + 1 (which occurs with probability

c2e
− δi
εt0 ) and either the chain stays above i (with probability ri+1), either it goes

back at some point to i and then we are back to the initial problem. Thus

ri = c2e
− δi
εt0 (ri+1 + (1− ri+1)ri) .

Suppose εt0 is small enough to have c2e
− δi
εt0 ≤ 1

2 for all i = 1, .., q, so that

ri ≤ 2c2e
− δi
εt0 ri+1,

which concludes since rq+1 = 1. �

We only considered here the left part of C, but the same goes for the right one.
If x′b = maxB then there exist c′2 and q′ such that

P ((X,Y ) hits (zr, 1) before (x′b,−1) | (Xt0 , Yt0) = (x′b, 1)) ≤ (2c′2)
q′
e
− d
εt0 ,

and we write c3 = max
(

(2c2)
q
, (2c′2)

q′
)

.

Proof of Theorem 3.2: Let a > 0 be small enough such that U is non-decreasing
(resp. non-increasing) on {xb − a, xb} (resp. {x′b, x′b + a}) and that U(zl) −
max (U(xb − a), U(x′b + a)) ≥ d

2 . That way,

P ((X,Y ) hits (zl, 1) before (xb, 1) | (Xt0 , Yt0) = (xb − a,−1)) ≤ c3e
− d

2εt0

(and similarly in the right part of C). It means if at some time t1 the temperature
has been divided by two since t0, then from t1 we have the same bound on the
probability of success of an attempt to leave C starting from (xb − a,−1) than we
had for an attempt to leave C starting from (xb,−1) at initial temperature.

Let tj = t0 + 2aj and K0 = t0, suppose Kj has been defined for some j ∈ N, let
S0,j = Kj and for i ≥ 0

S̃i+1,j = inf

{
t > Si,j s.t.

(
(Xt, Yt) ∈ {(xb,−1), (x′b, 1)} and εt ≥

1

2
εtj

)}
Si+1,j = inf

{
t > Si,j s.t.

(
(Xt, Yt) ∈ {(xb − a,−1), (x′b + a, 1)} and εt <

1

2
εtj

)}
Si+1,j = min

(
τC , S̃i+1,j , Si+1,j

)
.

Let Nj = 0 if Kj = τC and else let

Nj = inf {n ≥ 1, Sn,j ≥ Kj + 2a or Sn,j = τC}
Kj+1 = SNj ,j .

The situation is the following: while the process has not escaped C yet, the Si,j ’s
are starting times of new attempts to leave with, for all i, j ∈ N2

P (Si+1,j = τC | Si,j , Si,j < τC) ≤ c3e
− d

2εSi,j .

A problem is that we don’t control the way the temperature evolves with i, j, and
this is why we introduced the Kj ’s, which are the times at which we update the
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temperature. Indeed Kj ≥ tj so that for all i, j ∈ N2, εSi,j ≤ εtj , which implies(
1Si∧Nj,j<τC

+ (i ∧Nj)c3e
− d

2εtj

)
i≥0

is a submartingale and

P (Kj+1 < τC | Kj , Kj < τC) = 1 + E
(
1Kj+1<τC − 1Kj<τC | Kj , Kj < τC

)
≥ 1− c3e

− d
2εtj E (Nj | Kj , Kj < τC) .

In the first instance suppose there exists m (which does not depend on the cooling
schedule) such that for all j ≥ 0

E (Nj | Kj , Kj < τC) ≤ m
√
εtj

. (3.4)

In that case by induction we get

P (Kj+1 < τC) = E (P (Kj+1 < τC | Kj , Kj < τC)P (Kj < τC))

≥

(
1− mc3√

εtj
e
− d

2εt0+j

)
P (Kj < τC)

≥
j∏

k=0

(
1− mc3√

εtk
e
− d

2εtk

)
.

Suppose εt0 is small enough so that mc3 (εt0)
− 1

2 e
− d

2εt0 is less than the positive

solution of 1 − z = e−2z, and so that ε 7→ ε−
1
2 e−

d
ε is increasing on (0, εt0). Hence

for j ≥ 1

P (tj < τC) ≥ P (Kj+1 < τC)

≥ exp

−2mc3

j−1∑
k=0

e
− d

2εtk

√
εtk


≥ exp

(
−mc3

a

∫ tj

t0

e−
d
εu

√
εu
du

)
,

and for all r > 0,

P (r < τC) ≥ P
(
t0 + 2a

⌈
r − t0

2a

⌉
< τC

)

≥ exp

−2mc3

e− d
εt0

√
εt0

+
1

2a

∫ r

t0

e−
d
εu

√
εu
du

 .

It remains to prove (3.4), which states that between two consecutive updates of
the temperature, there are not too many attempts to leave. Intuitively, if the
temperature decays slowly then the inter-jump times are of order

√
εtj and so the

number of attempts in a fixed duration should of the order εtj
− 1

2 . On the other
hand if the temperature falls rapidly then we only take into account attempts that
starts from (xb − a,−1) or (xb + a, 1), and between two such attempts the process
has to cover a distance of at least 2a.
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More precisely, since the process moves at constant speed, for all i, j, Si+1,j −
Si,j > 2a, so that

Nj ≤ 1 + inf

{
n ≥ 1, S̃n,j ≥ Kj + 2a or εS̃n,j ≤

1

2
εtj

}
.

Let ρ > 0 be such that U(xb−s) ≤ U(xb)+ρ(xb−s)2 for s ≤ |xb−zl| (and similarly
in the right part of C; the situation being the same, we only consider the left part
in the following). Starting from (xb,−1) at time Si,j the next jump time T of the
process, defined by (1.3) from an exponential r.v. E, satisfies,

T ≥ inf

{
s > Si,j , E <

ρs2

1
2εtj

}
∧ inf

{
s > Si,j , εs ≤

1

2
εtj

}
and thus S̃i+1,j − Si,j ≥ 2T and

Nj ≤ 1 + inf

{
n ≥ 1,

√
εtj
2ρ

n∑
i=1

√
Ei ≥ 2a

}
where (Ei)i≥1 is a sequence of i.i.d. random variables with law E(1), independent
from the past (t ≤ Kj). Now

Nj ≤ 1 +

 4a
√
ρ

E
(√

E
)√

εtj

+ inf

{
n ≥ 1,

1

n

n∑
i=1

√
Ei ≥

1

2
E
(√

E
)}

.

Note that Zk = 1
k

∑k
i=1

( √
Ei

E(
√
E)
− 1

)
satisfies a Large Deviation Principle, so that

E (Nj | Kj , Kj < τC) ≤ 1 +

 4a
√
ρ

E
(√

E
)√

εtj

+
∑
k≥1

P
(
Zk ≤ −

1

2

)
≤ m
√
εtj

for some m <∞ as long as εt0 is small enough. �

Remark: Here the constant c4 only depends on U ′′(xb) and U ′′(x′b), and m
only depends on c4. Furthermore, as has already been noticed, c3 only depends on
the internal sub-cusps of C. Thus, if (Dl)l≥0 is a family of cusps so that for all
k ≥ 0 all the minima of Dk belong to

⋂
l≥0

Dl, the constant Γ in Theorem 3.2 may

be chosen uniformly over k. And if U is a potential with a finite number of local
minima, going to +∞ at ±∞, Γ may be chosen uniformly over all cusps of U .

3.3. Proof of the NS condition. Now that Theorems 3.1 and 3.2 are established, we
recall (and slightly adapt) the arguments from Hajek (1988) to prove Theorem 1.3.

Let E ≥ 0 and

WE = {x ∈ R, x is a local minimum of depth strictly larger than E}
RE = {x ∈ R, x is reachable from y at height V (y) + E for some y ∈WE}
J = {x ∈ R, WE is reachable from x at height V (x)} .
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If x /∈ J , then the set of points which are reachable from x at height V (x) is a
cusp of depth at most E (else its bottom would be in WE and reachable from x at
height V (x)) which does not intersect J (if a point y were in the intersection, we
could reach y from x at height V (x) and then reach a point in WE from y at height
V (y) ≤ V (x)). Thus the connected component of Rr J which contains x is itself a
cusp of depth at most E. Moreover one of its end is a local maximum (else it could
be thicken without intersecting J) which means there are finitely many connected
components of Rr J ; we call them C1, . . . , Cn.

Lemma 3.6. Let E > 0. If ∫ ∞
0

(εs)
− 1

2 e−
E
εs ds =∞

then
lim
t→∞

P (Xt ∈ RE) = 1.

Proof : Note that there are a finite number of minima in WE , so that there exists
γ0 > 0 such that all those are of depth larger than E + γ0. We thicken RE , for
γ < γ0, as

RE,γ = {x ∈ R, x is reachable from y at height V (y) + E + γ for some y ∈WE} .
Since RE =

⋂
γ>0

RE,γ , we only need to prove the result for an arbitrary γ < γ0. Let

t0 ≥ 0, A0 = t0 and

Bi = inf {t > Ai, Xt /∈ J},
Ai+1 = min {t > Bi, Xt ∈ J},

α = inf {k ≥ 0, XAk ∈WE},
β = inf {k > α, XBk /∈ RE,γ}.

Since there is only a finite number of Cj , we can consider ε0 and c > 0 in Theo-
rem 3.1 such that if εt0 ≤ ε0, for all i ≥ 0,

E

[∫ Ai+1

Bi

(εs)
− 1

2 e−
E
εs ds

∣∣∣∣∣Bi
]
≤ c.

(Note that this would be false for E = 0).
On the other hand, note that on each connected component of J r WE , U

is monotone. There are two such components which are infinite, and where the
potential is convex, so that the expected time the process stays there is bounded
by a constant which only depends on ε0. The time the process stays in a compact
connected component of J rWE is bounded by twice the length of the component,
and there is a finite number of such components. Thus there exist c′ such that if
εt0 ≤ ε0, for all i ≥ 0,

E

[∫ Bi

Ai

(εs)
− 1

2 e−
E
εs ds

∣∣∣∣∣Ai
]
≤ c′.

Moreover as a consequence of part (3.2) of Theorem 3.1, E (α) is bounded by a
constant which does not depend on the cooling schedule, and finally there exists
c̃ > 0 such that

E

[∫ Aα

t0

(εs)
− 1

2 e−
E
εs ds

]
≤ c̃,
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so that

P (Aα ≥ r) ≤ c̃∫ r
t0

(εs)
− 1

2 e−
E
εs ds

.

At time Aα, the process attains the bottom of a cusp C (and therefore is in ĀC)
of depth E + γ which is included in RE,γ . Thanks to Theorem 3.2,

P (Aβ ≥ r) ≥ exp

−Γ

e−E+γ
εt0

√
εt0

+

∫ r

t0

e−
E+γ
εu

√
εu

du


≥ exp

−Γe
− γ
εt0

e− E
εt0

√
εt0

+

∫ r

t0

e−
E
εu

√
εu
du

 .

Thus, for any t0 and r ≥ t0,

P (Xr ∈ RE,γ) ≥ P (Aβ ≥ r ≥ Aα)

≥ exp

−Γe
− γ
εt0

e− E
εt0

√
εt0

+

∫ r

t0

e−
E
εu

√
εu
du

− c̃∫ r
t0

(εs)
− 1

2 e−
E
εs ds

.

Let h(t) be defined for any t ≥ 0 by∫ h(t)

t

e−
E
εu

√
εu
du =

1

εt
.

As a strictly increasing function it is invertible, and in particular (t → ∞) ⇔
(h(t)→∞).

P
(
Xh(t) ∈ RE,γ

)
≥ exp

(
−Γe−

γ
εt

(
e−

E
εt

√
εt

+
1

εt

))
− c̃εt

−→
h(t)→∞

1.

�

Proof of Theorem 1.3: We treat first the case of fast cooling, namely we assume
that for all δ > 0, ∫ ∞

0

(εs)
− 1

2 e−
δ
εs ds <∞.

Let x be a local minimum of U , δ > 0 and Cδ(x) be the set of points which are
reachable from x at height U(x) + δ. Any neighbourhood of x contains Cδ(x) for δ
small enough. If at some time t0 the process enters Cδ(x), Theorem 3.2 yields

P (Xt ∈ Cδ(x) ∀t ≥ t0) ≥ exp

−Γ

e− δ
εt0

√
εt0

+

∫ ∞
t0

e−
δ
εu

√
εu
du

 > 0.

Thus, each time the process reaches a local minimum x, it has a positive probability
to stay trapped forever in a neighbourhood of x. If it escapes, almost surely it will
reach another local minimum later. Thus, the probability that it get trapped at
some time is 1, and the probability that it’s already been trapped at time t goes to
1 as t goes to infinity, so that, if S is a neighborhood of all local minima of U ,

lim
t→∞

P (Xt ∈ S) = 1.
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Moreover, for any local minimum x, as the temperature is not allowed to vanish,
there is a non-zero probability to reach x, and so to stay trapped in Cδ(x), which
yields

lim inf
t→∞

P (Xt ∈ Cδ(x)) > 0.

Thus, we have proved the part 1 and the “if” (⇒) half of part 2 of Theorem 1.3 in
the case of fast cooling. Finally, the “only if” half of part 2 is tautological in this
case.

Concerning the part 3, recall that we have supposed there is at least one non-
global minimum x̃, near which the process has a non-zero probability to stay forever.
In this event U(Xt) ≥ U(x̃) > min

R
U + δ for δ small enough, so that

lim
t→∞

P
(
U(Xt) < min

R
U + δ

)
≤ 1− P (Xt gets trapped near x̃) < 1.

Now we turn to slow cooling, namely we suppose there exists F > 0 such that
∀δ 6= F , (∫ ∞

0

(εs)
− 1

2 e−
δ
εs ds =∞

)
⇔ (δ < F ) .

Then, for all δ < F , according to Lemma 3.6,

lim
t→∞

P (Xt ∈ Rδ) = 1.

Since any neighbourhood of all local minima contains Rδ for δ small enough, part
1 of Theorem 1.3 is proved.

Let E > 0 be such that ∫ ∞
0

(εs)
− 1

2 e−
E
εs ds =∞,

and S be a neighbourhood of all minima of depth E such that Sc is a neighbourhood
of all other minima. We want to prove

lim
t→∞

P (Xt ∈ S) = 0.

Lemma 3.6 together with the first part of Theorem 1.3 we have just proven implies
that for any neighbourhood U of the minima in RE ,

lim
t→∞

P (Xt ∈ U) = 1.

Thus, since Sc is a neighbourhood of all the minima it contains, it is enough to
prove that RE does not contain any minimum of depth exactly E.

Let x be such a minimum, and let z be such that U(z) < U(x) and z is reachable
from x at height U(x) + E. Suppose x ∈ RE , and let y ∈ WE be such that x is
reachable from y at height U(y) + E.

If U(y) < U(x), since y is reachable from x at depth U(y) + E < U(x) + E, by
definition of the depth of a local minimum, it means x is of depth strictly less than
E, which is a contradiction.

On the other hand if U(y) ≥ U(x), then z is reachable from y at height U(y)+E,
while U(z) < U(y) , which is contradictory with the fact that y is of depth strictly
larger than E.

This means RE does not contain any local minimum of depth E.
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At this point we have proven part 1 and implication ⇐ of part 2 of Theorem
1.3, which we will use to prove the converse.

Now suppose ∫ ∞
0

(εs)
− 1

2 e−
E
εs ds <∞.

In particular E ≥ F . Let x be a minimum of depth E. As a first step, assume∫ ∞
0

(εs)
− 1

2 e−
F
εs ds <∞.

Let C be the set of all points which are reachable from x at height strictly less than
U(x) + F (if F = E, C = Cx). Then C is a cusp of depth F , whose bottom B is
constituted of minima of depth exactly E, and the depth of any other minimum in
C is strictly less than F (since B is reachable from them without leaving C).

From Theorem 3.2, the process has a non-zero probability to stay trapped forever
in C, so that

lim inf
t→∞

P (Xt ∈ C) > 0.

On the other hand, if S ⊂ C is a neighbourhood of B, since the depth d of any
minimum in C r S satisfies d < F and so∫ ∞

0

(εs)
− 1

2 e−
d
εs ds =∞,

from part 1 and implication ⇐ of part 2 of Theorem 1.3

lim
t→∞

P (Xt ∈ C r S) = 0.

Hence,

lim inf
t→∞

P (Xt ∈ S) > 0

which ends the proof of part 2.
A slight adaptation is needed when∫ ∞

0

(εs)
− 1

2 e−
F
εs ds =∞.

In this case, necessarily F < E. Let η ∈ (0, F − E) and C be the set of all points
which are reachable from x at height U(x) + F + η. Then C is a cusp of depth
F + η whose bottom B is constituted of minima of depth exactly E, and whose
other minima are all of depth strictly less than F + η (since B is reachable from
them without leaving C). Since there is only a finite number of such minima, in
fact if η is small enough these non-global minima in C are even of depth less than
F (possibly equal).

Since F + η > F , the process has a non-zero probability to stay trapped forever
in C. On the other hand, since all non-global minima in C are of depth less than
F ,

lim
t→∞

P (Xt ∈ C r S) = 0.

as soon as S is a neighbourhood of B. Thus the same conclusion holds.

As in the fast cooling case, part 3 is a direct consequence of parts 1 and 2 and
of the presence of at least one non-global minimum.

�
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4. Non-minimal rate

As have been seen in Section 1.2, the measure µε = e−
U(x)
ε dx⊗ δ1+δ−1

2 is invariant
for the Markov process with generator

Lf(x, y) = yf ′(x, y) + λ(x, y) (f(x,−y)− f(x, y)) (4.1)

if and only if λ(x, y) =
(yU ′(x))

+

ε + r(x), where r can be any non-negative function.
A positive r is a residual rate of jump which brings randomness in the system at any
time. The previous works on explicit estimations of convergence to equilibrium for
the velocity jump process (Fontbona et al., 2012; Calvez et al., 2015; Monmarché,
2014) all assume r is bounded below by a positive constant r∗.

If r is bounded from above by a constant r∗ uniformly in x and ε, it is expected
that he behaviour of the process does not change. Indeed, at low temperature,
it only adds random jumps at exponential (macroscopic, in the sense: of order
of magnitude independent from ε) times to the minimal-rate dynamics, and the
latter accounts both for the way the process overcome an energy barrier, and the
metastable behaviour in the vicinity of a local minimum, namely: many microscopic
excursions of length of order

√
ε. In the rest of this section, we will make this

statement more precise, and prove it.
We will consider the context of Section 2, that is a uni-dimensional double-well

potential U with its three local extrema x0 < x1 < x2 and an homogeneous Markov
process starting at (X0, Y0) = (x0, 1); but now the generator is given by (4.1) with
r 6= 0. We are interested in the following:

η = inf {t > 0, Xt ∈ {x0, x1}} , (4.2)

px0 = P (Xη = x1) .

Proposition 4.1. Whatever the residual rate of jump x 7→ r(x),

px0
=

e−
U(x1)−U(x0)

ε

1 +
∫ x1

x0
r(z)e−

U(x1)−U(z)
ε dz

Remarks :

• A positive residual rate of jump can only worsen the probability to overcome
an energy barrier in one shot.
• A positive residual rate of jump in the neighbourhood of x1 does more harm

than the same rate near x0.

Proof : If x ∈ (x0, x1), let px be the probability that the process (Xt, Yt)t≥0, starting
from (x, 1), reaches (x1, 1) before (x,−1). Suppose the process starts at (x − s, 1)
for some small s > 0. The probability the process goes from x − s to x without

any jump is 1− s
(
U ′(x)
ε + r(x)

)
+ o
s→0

(s). The probability it reaches (x, 1) before

(x−s,−1) but with at least one jump (and so with at least two jumps) is of order s2

(when s→ 0). Once the process has reached (x, 1), it has a probability px to reach
(x1, 1) before having fallen back to (x,−1). If nevertheless it has fallen back to
(x,−1) - which occurs with probability (1−px) - it has a probability sr(x)+ o

s→0
(s)

to jump before reaching (x − s,−1), in which case it reaches again (x, 1) with
probability 1 + o

s→0
(1). In this latter case, it reaches (x1, 1) before (x− s,−1) with
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probability px + o
s→0

(1). Thus everything boils down to

px−s =

(
1− s

(
U ′(x)

ε
+ r(x)

))
(px + s(1− px)pxr(x)) + o

s→0
(s)

= px − spx
(
U ′(x)

ε
+ pxr(x)

)
+ o
s→0

(s).

We shall solve the differential equation, for all x ∈ (x0, x1),

∂xpx = px

(
U ′(x)

ε
+ pxr(x)

)
,

by looking for a solution of the form px = h(x)e−
U(x1)−U(x)

ε . This yields(
1

h

)′
(x) = −r(x)e−

U(x1)−U(x)
ε ,

and we conclude with h(x1) = px1 = 1. �

To study η, the length of an excursion away from x0, we construct the process with
generator (4.1) in the following way: let (Ek)k≥1 and (Fk)k≥1 be two independent
sequences of independent r.v. with law E(1). Let V1 and W1 be defined by

εE1 =

∫ V1

0

(Y0U
′(X0 + Y0s))+ ds, F1 =

∫ W1

0

r(X0 + Y0s)ds.

Let S1 = min (V1,W1). From T0 = 0 to T1 = S1 the process goes on deterministi-
cally, in the sense that Ys = Y0 and Xs = X0 + sY0. At time T1 the process jumps,
so that YT1

= −Y0. If S1 = V1, the process jumps due to the minimal rate; we will
call this a first type jump. If S1 = W1 the jump is due to the residual rate and we
will call this a second type jump. When the process has been defined up to a jump
time Tj , we start the same procedure again, replacing E1 by Ej+1 and F1 by Fj+1.

Since U is supposed smooth, U (3)(x) is bounded on [x0, x1], interval on which
U is strictly increasing. Thus it exists ρ > 0 such that for all x ∈ [x0, x1), for all
positive s ≤ x1 − x,

U(x+ s) ≥ U(x) + ρs2.

We define

Dk = min

(
|x1 − x0|,

√
εE2k−1

ρ

)
,

which is independent from the sequence (Fk)k≥0. On the other hand, we consider
the events

Ak =

{
Fk <

∫ x1−x0

0

r(z)dz

}
and the geometric variable

N = max {k ≥ 1, A2k} ,
which is independent from the sequence (Ek)k≥0.

Lemma 4.2. Whatever the residual rate of jump x 7→ r(x),

η ≤ 2

N∑
k=1

Dk,

where η is defined by (4.2).
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Proof : From time 0 to η, the process alternates between ascending and downward
moves. If Xη = x0, the process spends as much time going up as going down, and
if Xη = x1 then it spends more time going up than down; in either case, η is less
than twice the cumulated ascending time. Let n be the number of ascending moves
before the time η. At the end of the kth ascending move, the next time of jump
will be defined thanks to the variable F2k (as long as the process does not reach
(x0,−1)). In the event Ā2k (namely the negation of A2k) there is no second type
jump before the process reaches (x0,−1). This means n ≤ N .

Let (dk)1≤k≤n be the duration of the n ascending moves, and (Zk)1≤k≤n be the
starting point of these moves (for instance Z1 = x0).

dk ≤ V2k−1

= sup {t < (x1 − x), εE2k−1 > U(Zk + t)− U(Zk)}
≤ sup

{
t < (x1 − x0), εE2k−1 > ρt2

}
= Dk.

Finally,

η ≤ 2

n∑
k=1

dk ≤ 2

N∑
k=1

Dk.

�

Now if r is supposed bounded above by a constant r∗,

E [N ] = 1 +
1

P(Ā2)
≤ 1 + e(x1−x0)r∗ ,

and thus, N and the Dk’s being independent, E [η] ≤ c
√
ε for some constant c. On

the other hand,

E [η] ≥ P
(
Ā1, Ā2

)
E
[
η | Ā1, Ā2

]
≥ e−2(x1−x0)r∗E [min(V1, x1 − x0)] .

From Lemma 2.1 we get that E [η] ≥ c′
√
ε for some c′ > 0. But if E [η] is of order√

ε, it means when ε goes to 0 it is unlikely that a second type jump occurs during
an excursion, so that only the asymptotic of E [V1] should intervene. Indeed, we
can prove the following:

Proposition 4.3. If r ≤ r∗,

E [η] =

√
2πε

U ′′(x0)

(
1 + o

ε→0
(1)
)

Proof : When r ≤ r∗, Fk ≤ r∗Wk. Since Vk ≤ Dk, the event B = {r∗D1 ≤
min(F1, F2, δ)} (for some δ > 0) implies that V1 ≤ min(W1,W2): there is no second
type jump during the excursion. We decompose

E [η] = E [η1B ] + E [η1B̄ ] .

First, note that P (B) goes to 1 when ε goes to 0. Second,

E [1B̄η] ≤ 2E

[
1B̄

N∑
k=1

Dk

]
= 2E [1B̄D1] + 2P

(
B̄
)
E [N − 1]E [D2]

≤ 2
√

P
(
B̄
)
E [D2

1] + 2P
(
B̄
)
E [N − 1]E [D2]
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= o
ε→0

(√
ε
)
.

Suppose that B holds and δ < r∗|x1 − x0|. Then the process goes up until a
first time jump occurs, then it falls back to x0, and no second type jump occurs:
η = 2V1, and

εE1 = U(x0 + V1)− U(x0)

=
1

2
U ′′(x0)

(
V1√
ε

)2

ε+ o
ε→0

(ε)

⇒ V1√
ε
−→
ε→0

√
2E1

U ′′(x0)
a.s.

Moreover 1B̄ → 1 almost surely, and

V1√
ε
1B̄ ≤

D1√
ε
≤

√
E1

ρ
.

By the dominated convergence theorem,

2E [V11B̄ ] = 2
√
εE

[√
2E1

U ′′(x0)

](
1 + o

ε→0
(1)
)
,

which concludes this proof. �

As a conclusion, note than when r ≤ r∗,

e−
U(x1)−U(x0)

ε ≥ px0
≥ e−

U(x1)−U(x0)
ε

1 + (x1 − x0)r∗
.

From these bounds, following the proof of Theorem 1.3, we can see the same result
holds even if the non-minimal rate is not zero (as long as it is bounded above
uniformly in time). On the other hand if r goes to infinity as ε goes to 0, the
velocities at two different instants are more and more decorrelated, and we may
think the (suitably rescaled) process ends up with a genuine diffusive part. We
recall this has been proved at least for the case of a constant potential on the torus,
in Miclo and Monmarché (2013).

5. The multidimensional process

In this section we consider an inhomogeneous process Zε on Td × Sd−1 with
generator (Lt)t≥0 given by (1.6), with a positive cooling schedule (εt)t≥0, and its
associated semi-group (Ps,t)t≥s≥0. To lighten the notations, in this section we drop
the ε exponent and only write Z = (X,Y ). In order to prove Theorems 1.4 and 1.5
we will establish the following intermediary result:

Theorem 5.1. There exist c, θ > 0 that depend only on d, r, U such that for all
cooling schedule, all initial law µ, and all t ≥ 0,

‖µPt,t+√d − νt‖TV ≤
(

1− ce−
θ
εt

)
‖ν − νt‖TV + θ

(
1

εt+
√
d

− 1

εt

)
.

In the first instance we consider the case U = 0:
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Lemma 5.2. Let
(
P 0
t

)
t≥0

be the semi-group on P
(
Td × Sd−1

)
generated by

Lf(x, y) = y.∇xf(x, y) + r

(∫
f(x, z)dz − f(x, y)

)
. (5.1)

Then, there exists c > 0 which depends only on d and r such that for all µ1, µ2 ∈
P
(
Td × Sd−1

)
, ∥∥∥µ1P

0√
d
− µ2P

0√
d

∥∥∥
TV

≤ (1− c) ‖µ1 − µ2‖TV

Proof : Let (Z0, Z
′
0) be an optimal coupling of µ1 and µ2, in the sense that the law

of Z0 (resp. Z ′0) is µ1 (resp. µ2) and that

‖µ1 − µ2‖TV = P (Z0 6= Z ′0) .

We aim to construct a coupling (Zt, Z
′
t)t∈[0,

√
d] for which each marginal is a Markov

process with generator (5.1) and such that Z√d and Z ′√
d

are likely to be equal. If

Z0 = Z ′0 we define Z up to time
√
d and then let Z ′t = Zt for all t ∈ (0,

√
d].

Now if Z0 6= Z ′0 we will show that the (density part of the) laws of Z√d and Z ′√
d

are bounded below by a constant time the uniform density on Td × Sd−1, which
yields a lower bound on their total variation distance. Indeed, let (Ei)i≥0 be a
sequence of i.i.d. exponential variables and defined S0 = 0 and Si+1 = Si + 1

rEi to

be the jump times of Z. Under the event {E3 > r
√
d} there are at most two jumps

before time
√
d. More precisely consider the event

B =

{
E3 > r

√
d,

r
√
d

2
< E1 + E2 < r

√
d

}
so that if f is any positive function, starting from Z0 = (x0, y0),

E
(
f(Z√d)

)
≥ E

(
f(Z√d)1B

)
≥ P

(
E3 > r

√
d
)∫ √d

t= 1
2

√
d

∫ t

s=0

∫
f (x̃, y2) r2e−rtdy1dy2dsdt,

where dy1 and dy2 stand for the uniform law on Sd−1 and

x̃ = x0 + sy0 + (t− s)y1 + (
√
d− t)y2.

Suppose t > 1
2

√
d and y2 ∈ Sd−1 (and thus x′0 := x0 + (

√
d − t)y2) are fixed. We

want to prove ∫ t

0

∫
Sd−1

f (x̃, y2) e−rsdsdy1 ≥ c1

∫
Td
f (u, y2) du (5.2)

for some c1 > 0. Let u ∈ Td and δ > 0, S be a r.v. uniform on [0, 1] and Y be
uniformly distributed on Sd−1 and independent from S, so that (5.2) reads

P (|x′0 + tSy0 + t(1− S)Y − u| ≤ δ) ≥ c2δd

with a constant c2 that depends neither on x′0, t, u, δ nor y0. Since the diameter

of Td is 1
2

√
d < t, there exists s∗ ∈ (0, 1) and y∗ ∈ Sd−1 such that u = x′0 + ts∗y0 +

t(1− s∗)y∗.

P (|x′0 + tSy0 + t(1− S)Y − u| ≤ δ) ≥ P
(
|S − s∗|+ |Y − y∗| ≤

δ

2
√
d

)
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≥ P
(
|S − s∗| ∧ |Y − y∗| ≤

δ

4
√
d

)
≥ c2δ

d

for some c2 > 0 since S and Y are uniformly drawn on compact spaces with
respective dimensions 1 and d− 1. Bringing the pieces together we have obtained

E
(
f(Z√d)

)
≥ r2e−2r

√
dc1

∫
Td×Sd−1

f (u, y2) dudy2

for any f ≥ 0. In other words for any Borel set A ⊂ Td × Sd−1,

P
(
Z√d ∈ A

)
≥ cP (H ∈ A)

where c = r2e−2r
√
dc1 and H is a r.v. with uniform law dx × dy on Td × Sd−1.

This means there exists a probability measure m (that depends on Z0) such that
the law of Z√d is c(dx× dy) + (1− c)m. The same goes for Z ′ with a law m′. With
probability c, set Z√d = H = Z ′√

d
, and with probability (1 − c), draw Z√d (resp.

Z ′) according to the law m (resp. m′). with this coupling,

P
(
Z√d 6= Z ′√

d

)
≤ (1− c)P (Z0 6= Z ′0) .

�

Proof of Theorem 5.1: Let (Z0, Z
′
0) be an optimal coupling of µ and νt, in the sense

that the law of Z0 (resp. Z ′0) is µ (resp. νt) and that

‖µ− νt‖TV = P (Z0 6= Z ′0) .

If Z0 = Z ′0 let Z ′ = (X ′, Y ′) evolve as a Markov process with generator Lt (here
t is fixed). Since νt is invariant for Lt, Z

′√
d
∼ νt. Let E be an exponential r.v.

independent from (Z ′s)s∈[0,
√
d] and

S = inf

{
s ≥ t, E <

∫ s

t

(Y ′u∇xU(X ′u))+

(
1

εu
− 1

εt

)
du

}
.

Define Zs = Z ′s up to time T = S ∧
√
d. If T = S, the process Z is reflected at time

T (in the sense Y ← Y ∗) and then we let Z evolve as an inhomogeneous Markov

process with generator (Ls)s≥0 independently from Z ′. Note that T =
√
d implies

Z√d = Z ′√
d
, and that

P (T < S) ≥ P

(
E >

√
d‖∇xU‖∞

(
1

εt+
√
d

− 1

εt

))
. (5.3)

This means

‖µPt,t+√d − νt‖TV ≤ P
(
Z√d 6= Z ′√

d
| Z0 6= Z ′0, T < S

)
‖µ− νt‖TV

+

(
1− e

−
√
d‖∇xU‖∞

(
1

ε
t+
√
d
− 1
εt

))
≤ P

(
Z√d 6= Z ′√

d
| Z0 6= Z ′0, T < S

)
‖µ− νt‖TV

+
√
d‖∇xU‖∞

(
1

εt+
√
d

− 1

εt

)
. (5.4)
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In the following, suppose T < S and Z0 6= Z ′0. Let W = (R,Q) and W ′ = (R′, Q′)
be Markov processes associated to the generator (5.1) with respectively W0 = Z0

and W ′0 = Z ′0 and such that

P
(
W√d 6= W ′√

d

)
= ‖µP 0√

d
− νtP 0√

d
‖TV .

Let F be an exponential r.v. which is independent from all the other variables and

S1 = inf

{
s ≥ t0, εtF <

∫ s

t

(Qu∇xU(Ru))+ du

}
S2 = inf

{
s ≥ t0, εtF <

∫ s

t

(Q′u∇xU(R′u))+ du

}
Define Z = W up to time T1 = S1 ∧

√
d and Z ′ = W ′ up to time S2 ∧

√
d. If

T1 = S1 the process Z is reflected at time T1 and then let it evolve independently
from W , and similarly for Z ′. Note that the event {εtF > κ} is independent from
{W√d = W ′√

d
}, so that

P
(
Z√d = Z ′√

d
| Z0 ≥ Z ′0, T < S

)
≥ P

(
εtF >

√
d‖∇xU‖∞

)
P
(
W√d = W ′√

d

)
(5.5)

≥ ce−
√
d‖∇xU‖∞

εt

where c is given by Lemma 5.2. �

Remarks:

• Concerning the constants involved in Theorem 5.1, with the previous proofs

we obtained that it is possible to choose c ≤ r2e−2
√
dc1, where c1 only

depends on d, and θ ≤
√
d‖∇xU‖∞. Nevertheless in the proof of Lemma

5.2, notice that the bound c on the probability of success for the coupling
is obtained by considering only the situation where both processes jump
twice and only twice. Hence, the bound (5.3) may be improved to

P (T < S) ≥ P

(
E > κ(

√
d)

(
1

εt+
√
d

− 1

εt

))
,

where we define κ(t) as the supremum of
∫ t

0
(q(u)∇xU (r(u)))+ du over all

the (r, q) which are the trajectory of a velocity jump process that jumps
only twice during time t. The same goes at line (5.5) and thus Theorem

5.1 holds with θ ≤ κ2(
√
d).

• when we proved (5.4) we hadn’t use the fact 1
2

√
d is the diameter of Td yet,

which means that in fact for all s ≤
√
d

‖µPt,t+s − νt‖TV ≤ ‖µ− νt‖TV +
√
d‖∇U‖∞

(
1

εt+s
− 1

εt

)
.

Proof of Theorem 1.4: As a direct consequence of the previous remark and of The-
orem 5.1 we obtain, if εt = ε is constant (so that P0,t = Pt is homogeneous),

‖µPt − ν∞‖TV ≤ e
−ce−

θ
ε

⌊
t√
d

⌋
‖µ− ν∞‖TV

≤ e
− c√

d
e−

θ
ε (t−

√
d) ‖µ− ν∞‖TV .
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�

Proof of Theorem 1.5: Let t0 be such that ∂s

(
1
εs

)
≤ 1

(θ+η)s holds for s ≥ t0, let

t > 2t0 +
√
d and n =

⌊
t−t0√
d

⌋
. For k ∈ J0, nK let tn−k = t− k

√
d,

dk = ‖µP0,tk − νtk‖TV ,

ak = ce
− θ
εtk ,

bk = θ

(
1

εtk+1

− 1

εtk

)
,

so that Theorem 5.1 reads dk+1 − dk ≤ −akdk + bk. This situation is a discrete

analogous of Miclo (1992, Lemme 6). From
(

1
εt

)′
≤ 1

(θ+η)t ,

bk ≤
θ
√
d

(θ + η)tk
, ak ≥ m

(
1

tk

) θ
θ+η

, ck :=
bk
ak
≤ m′

(
1

tk

) η
θ+η

for some m,m′ > 0. For a fixed l ∈ N and for all k ≥ l, fk := dk−m′t
− η
θ+η

l satisfies

fk+1 − fk ≤ −akff

⇒ fk ≤ fl

k−1∏
j=l

(1− aj)

≤ exp

−m k−1∑
j=l

(
1

tj

) θ
θ+η


≤ exp

(
− m√

d

∫ tk

tl

(
1

s

) θ
θ+η

ds

)
.

Since we choose t > 2t0 +
√
d there exists l ∈ N such that tl ≥ t

2 ≥ tl −
√
d, hence

‖µP0,t − νt‖TV = dn

≤ m′t
− η
θ+η

l + exp
(
−m′′

(
t
η
θ+η − t

η
θ+η

l

))
≤ Mt−

η
θ+η

for some m′′,M > 0.
Let (X,Y ) be a velocity jump process with generator (Ls)s≥0 and initial law µ

and (V,W ) be a r.v. with law νt. By Laplace method for any α > 1 there exists a
constant C such that for all h > 0,

P (U(V ) > minU + h) ≤ Ce−
h
αεt .

The conclusion follows from

P (U(Xt) > minU + h) ≤ P (U(V ) > minU + h) + ‖µP0,t − νt‖TV
≤ Ce−

h
αεt +Mt−

η
θ+η .

�
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Remark: Here is an heuristic to adapt the previous arguments to prove The-
orem 1.5 holds with θ = E∗: given any smooth path γ : [0, 1] → Td with |γ′| = 1
and any δ > 0, a process W with generator (5.1) (namely for which U = 0) starting
from γ(0) has a positive probability (depending on r, d and γ) to reach γ(1) in a
given time (say t = 2) staying in a tube of diameter δ around the path γ. Here, a
tube is defined by

Tγ,δ = {(x, y) ∈ Td × Sd−1 s.t. ∃s ∈ [0, 1], |x− γ(s)|+ |y − γ′(s)| ≤ δ}.

Then we can define a process Z with generator (1.6) to be equal to W up to a
time at which a clock depending on the cooling schedule (similar to S1 and S2 in
the proof of Theorem 5.1) rings, at which point Z is reflected. If γ is an optimal
path to leave a cusp C, in the sense a path with max γ − min γ equal to D the
depth of C, the process is not reflected during this climb with probability of order
exp(−(D + f(δ))/ε) where f(δ) goes to 0 with δ.

This leads to an Eyring-Kramers formula (with a non explicit prefactor since
the probability for W to approximatively follow γ is not easily tractable) and more
generally to an adaptation of all the arguments from Section 3. Note however
that such a study in the regime ε → 0 only quantifies metastability due to energy
barriers, so that E∗ naturally appears, but not entropic barriers (see Lelièvre (2013)
for the distinction). The latter are indeed related to the very probability for W
to follow a particular path, and a really relevant question to compare the velocity
Gibbs sampler to the Fokker-Planck diffusion is: is it easier (i.e. faster) to find
a particular path, in some applied problem, with broken lines rather than with a
Brownian motion? When there are both energy and entropic barriers, is there an
optimal amount of inertia to overcome both?
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