PENGOLAHAN KROMIUM(VI) PADA AIR LIMBAH PERTAMBANGAN BIJIH NIKEL MENGGUNAKAN BESI(II) YANG DIPEROLEH DARI SLAG NIKEL

Penulis

  • Asep Nurohmat Majalis Pusat Riset Kimia Maju Badan Riset dan Inovasi Nasional
  • Noviarso Wicaksono Pusat Riset dan Teknologi Pertambangan, Badan Riset dan Inovasi Nasional (BRIN)
  • Yeni Novitasari Pusat Riset dan Teknologi Pertambangan, Badan Riset dan Inovasi Nasional (BRIN)
  • Nurvita Permatasari Pusat Riset dan Teknologi Pertambangan, Badan Riset dan Inovasi Nasional (BRIN)
  • Rizki Pratiwi PT. Vale Indonesia, Tbk., Sorowako, Luwu Timur-Sulawesi Selatan

DOI:

https://doi.org/10.30556/jtmb.Vol18.No3.2022.1314

Kata Kunci:

bijih nikel, kondisi batch, kondisi kontinu, rasio berat Fe(II), Cr(VI), slag nikel

Abstrak

Aktivitas penambangan dan pengolahan bijih nikel yang memiliki kandungan kromium tinggi mengakibatkan lepasan Cr(VI) pada air limbah pertambangan. Cr(VI) pada air limbah menjadi perhatian utama pengelolaan lingkungan pertambangan bijih nikel. Cr(VI) memiliki toksisitas dan mobilitas tinggi, serta bersifat karsinogenik dan mutagenik. Di sisi lain, proses pirometalurgi bijih nikel menghasilkan slag yang memiliki kandungan Fe tinggi dan berpotensi menjadi sumber Fe(II) untuk mengolah Cr(VI). Pengolahan Cr(VI) dengan Fe(II) dari slag nikel dilakukan pada kondisi batch dan kontinu untuk menentukan parameter kunci yaitu rasio berat Fe(II):Cr(VI). Kondisi batch pada konsentrasi Fe(II) di larutan fero sulfat tetap dan bervariasi dengan menerapkan rasio berat Fe(II):Cr(VI) 1:1; 2,5:1; 5:1; 7,5:1; 10:1 dan 12,5:1 diperoleh penurunan Cr(VI) pada rentang 98,18 - 99,09%. Kondisi kontinu pada rasio berat Fe(II):Cr(VI)=7,5:1 diperoleh penurunan Cr(VI) pada rentang 98,46 - 100%. Hasil analisis konsentrasi logam terlarut Fe, Co, Ni, Cu, Zn, Cd, Pb, Cr pada air limbah hasil pengolahan telah memenuhi baku mutu air limbah pertambangan bijih nikel di Indonesia, dan konsentrasi logam terlarut As < 0,001 mg/L. Hasil ini menunjukkan bahwa Fe(II) dari slag nikel dapat menurunkan Cr(VI) pada air limbah pertambangan bijih nikel dengan signifikan.

Referensi

Ahmadi, M., Kouhgardi, E. dan Ramavandi, B. (2016) “Physico-chemical study of dew melon peel biochar for chromium attenuation from simulated and actual wastewaters,” Korean Journal of Chemical Engineering, 33(9), hal. 2589–2601. doi: 10.1007/s11814-016-0135-1.

Besharat, F., Ahmadpoor, F. dan Nasrollahzadeh, M. (2021) “Graphene-based (nano)catalysts for the reduction of Cr(VI): A review,” Journal of Molecular Liquids, 334, hal. 116123. doi: 10.1016/j.molliq.2021.116123.

Buerge, I. J. dan Hug, S. J. (1997) “Kinetics and pH dependence of Chromium(VI) reduction by Iron(II),” Environmental Science & Technology, 31(5), hal. 1426–1432. doi: 10.1021/es960672i.

Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J. dan Naushad, M. (2017) “Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review,” Journal of Environmental Chemical Engineering, 5(3), hal. 2782–2799. doi: 10.1016/j.jece.2017.05.029.

Chen, K.-Y., Tzou, Y.-M., Chan, Y.-T., Wu, J.-J., Teah, H.-Y. dan Liu, Y.-T. (2019) “Removal and simultaneous reduction of Cr(VI) by organo-Fe(III) composites produced during coprecipitation and coagulation processes,” Journal of Hazardous Materials, 376, hal. 12–20. doi: 10.1016/j.jhazmat.2019.04.055.

Economou-Eliopoulos, M., Frei, R. dan Megremi, I. (2016) “Potential leaching of Cr(VI) from laterite mines and residues of metallurgical products (red mud and slag): An integrated approach,” Journal of Geochemical Exploration, 162, hal. 40–49. doi: 10.1016/j.gexplo.2015.12.007.

Hariani, P. L., Hidayati, N. dan Oktaria, M. (2009) “Penurunan konsentrasi Cr(VI) dalam air dengan koagulan FeSO4,” Jurnal Penelitian Sains, 12(2), hal. 12208:1–4. doi: 10.56064/jps.v12i2.180.

Haroon, H., Ashfaq, T., Gardazi, S. M. H., Sherazi, T. A., Ali, M., Rashid, N. dan Bilal, M. (2016) “Equilibrium kinetic and thermodynamic studies of Cr(VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: Batch and column reactors,” Korean Journal of Chemical Engineering, 33(10), hal. 2898–2907. doi: 10.1007/s11814-016-0160-0.

He, Y. T., Chen dan Traina, S. J. (2004) “Inhibited Cr(VI) reduction by aqueous Fe(II) under hyperalkaline conditions,” Environmental Science & Technology, 38(21), hal. 5535–5539. doi: 10.1021/es049809s.

Hori, M., Shozugawa, K. dan Matsuo, M. (2015) “Reduction process of Cr(VI) by Fe(II) and humic acid analyzed using high time resolution XAFS analysis,” Journal of Hazardous Materials, 285, hal. 140–147. doi: 10.1016/j.jhazmat.2014.11.047.

Huang, J., Jones, A., Waite, T. D., Chen, Y., Huang, X., Rosso, K. M., Kappler, A., Mansor, M., Tratnyek, P. G. dan Zhang, H. (2021) “Fe(II) redox chemistry in the environment,” Chemical Reviews, 121(13), hal. 8161–8233. doi: 10.1021/acs.chemrev.0c01286.

Jiang, B., Gong, Y., Gao, J., Sun, T., Liu, Y., Oturan, N. dan Oturan, M. A. (2019) “The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: State-of-the-art and perspectives,” Journal of Hazardous Materials, 365, hal. 205–226. doi: 10.1016/j.jhazmat.2018.10.070.

Joe-Wong, C., Brown, G. E. dan Maher, K. (2017) “Kinetics and products of Chromium(VI) reduction by Iron(II/III)-bearing clay minerals,” Environmental Science & Technology, 51(17), hal. 9817–9825. doi: 10.1021/acs.est.7b02934.

Kim, H.-B., Kim, J.-G., Kim, S.-H., Kwon, E. E. dan Baek, K. (2019) “Consecutive reduction of Cr(VI) by Fe(II) formed through photo-reaction of iron-dissolved organic matter originated from biochar,” Environmental Pollution, 253, hal. 231–238. doi: 10.1016/j.envpol.2019.07.026.

Kwak, S., Yoo, J.-C., Moon, D. H. dan Baek, K. (2018) “Role of clay minerals on reduction of Cr(VI),” Geoderma, 312, hal. 1–5. doi: 10.1016/j.geoderma.2017.10.001.

Li, Y., Liang, J., He, X., Zhang, L. dan Liu, Y. (2016) “Kinetics and mechanisms of amorphous FeS2 induced Cr(VI) reduction,” Journal of Hazardous Materials, 320, hal. 216–225. doi: 10.1016/j.jhazmat.2016.08.010.

Lind, B. B., Fällman, A.-M. dan Larsson, L. B. (2001) “Environmental impact of ferrochrome slag in road construction,” Waste Management, 21(3), hal. 255–264. doi: 10.1016/S0956-053X(00)00098-2.

Liu, W., Jin, L., Xu, J., Liu, J., Li, Y., Zhou, P., Wang, C., Dahlgren, R. A. dan Wang, X. (2019) “Insight into pH dependent Cr(VI) removal with magnetic Fe3S4,” Chemical Engineering Journal, 359, hal. 564–571. doi: 10.1016/j.cej.2018.11.192.

Mahringer, D., Polenz, C. dan El-Athman, F. (2020) “Stabilization of Chromium (VI) in the presence of Iron (II): Method development and validation,” Water, 12(4), hal. 924. doi: 10.3390/w12040924.

Majalis, A. N., Permatasari, N. V., Novitasari, Y., Wicaksono, N., Armin, D. dan Pratiwi, R. (2020) “Kajian awal produksi fero sulfat dari slag nikel melalui proses pelindian menggunakan asam sulfat,” Jurnal Ilmu Lingkungan, 18(1), hal. 31–38. doi: 10.14710/jil.18.1.31-38.

Mončeková, M., Novotný, R., Koplík, J., Kalina, L., Bílek, V. dan Šoukal, F. (2016) “Hexavalent chromium reduction by ferrous sulphate heptahydrate addition into the Portland Clinker,” Procedia Engineering, 151, hal. 73–79. doi: 10.1016/j.proeng.2016.07.382.

Nelson, J., Joe-Wong, C. dan Maher, K. (2019) “Cr(VI) reduction by Fe(II) sorbed to silica surfaces,” Chemosphere, 234, hal. 98–107. doi: 10.1016/j.chemosphere.2019.06.039.

Pang, Y., Kong, L., Chen, D. dan Yuvaraja, G. (2019) “Rapid Cr(VI) reduction in aqueous solution using a novel microwave-based treatment with MoS2-MnFe2O4 composite,” Applied Surface Science, 471, hal. 408–416. doi: 10.1016/j.apsusc.2018.11.180.

Sedlak, D. L. dan Chan, P. G. (1997) “Reduction of hexavalent chromium by ferrous iron,” Geochimica et Cosmochimica Acta, 61(11), hal. 2185–2192. doi: 10.1016/S0016-7037(97)00077-X.

Smoczynski, L., Kalinowski, S., Cretescu, I., Smoczynski, M., Ratnaweera, H., Trifescu, M. dan Kosobucka, M. (2019) “Study of sludge particles formed during coagulation of synthetic and municipal wastewater for increasing the sludge dewatering efficiency,” Water, 11(1), hal. 101. doi: 10.3390/w11010101.

Stearns, D. M., Kennedy, L. J., Courtney, K. D., Giangrande, P. H., Phieffer, L. S. dan Wetterhahn, K. E. (1995) “Reduction of Chromium(VI) by ascorbate leads to Chromium-DNA binding and DNA strand breaks in Vitro,” Biochemistry, 34(3), hal. 910–919. doi: 10.1021/bi00003a025.

Sulistyo, H., Sediawan, W. B., Sarto, S., Yusuf, Y. dan Nainggolan, R. (2012) “Water treatment by coagulation-flocculation using ferric sulphate as coagulant,” ASEAN Journal of Chemical Engineering, 12(1), hal. 42–50. doi: 10.22146/ajche.49754.

Wang, D., Li, G., Qin, S., Tao, W., Gong, S. dan Wang, J. (2021) “Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation,” Ecotoxicology and Environmental Safety, 208, hal. 111734. doi: 10.1016/j.ecoenv.2020.111734.

Xi, B., Li, R., Zhao, X., Dang, Q., Zhang, D. dan Tan, W. (2018) “Constraints and opportunities for the recycling of growing ferronickel slag in China,” Resources, Conservation and Recycling, 139, hal. 15–16. doi: 10.1016/j.resconrec.2018.08.002.

Zheng, Y., Liu, S., Dai, C., Duan, Y., Makhinov, A. N., Hon, L. K. dan Araruna Júnior, J. T. (2020) “Study on the influence mechanism of underground mineral element Fe(II) on Cr(VI) transformation under subsurface and groundwater interaction zones,” Environmental Sciences Europe, 32(1), hal. 62. doi: 10.1186/s12302-020-00332-7.

Unduhan

Diterbitkan

2022-09-30

Cara Mengutip

Majalis, A. N., Wicaksono, N., Novitasari, Y., Permatasari, N. dan Pratiwi, R. (2022) “PENGOLAHAN KROMIUM(VI) PADA AIR LIMBAH PERTAMBANGAN BIJIH NIKEL MENGGUNAKAN BESI(II) YANG DIPEROLEH DARI SLAG NIKEL”, Jurnal Teknologi Mineral dan Batubara, 18(3), hlm. 177–191. doi: 10.30556/jtmb.Vol18.No3.2022.1314.