
Proceedings of the Institute of Mathematics and Mechanics,
National Academy of Sciences of Azerbaijan
Volume 49, Number 2, 2023, Pages 275–280
https://doi.org/10.30546/2409-4994.2023.49.2.275

TRIANGULAR REPRESENTATION OF THE JOST-TYPE

SOLUTION TO THE PERTURBED MODIFIED MATHIEU

EQUATION

AGIL KH. KHANMAMEDOV AND GUNAY F. RZAYEVA

Abstract. The perturbed modified Mathieu equation −y′′ + (chx) y +
q (x) y = λy on the half-axis 0 ≤ x < ∞ is considered. By means
of transformation operator an integral representation of the Jost-type
solution is found. An estimate is obtained with respect to the kernel of
the transformation operator. A connection is established between the
kernel of the integral representation and the perturbation potential.

1. Introduction

The Mathieu differential equation often arises in solving scientific and engi-
neering problems (see [1], [5], [6], [8], [13], [15] ). The most interesting example is
the problem of oscillations of an elliptical membrane (see [5], [6]). The Mathieu
equations also arise when studying the propagation of electromagnetic waves in
an elliptical cylinder, when considering surface waves of a liquid in a vessel having
the shape of an elliptical cylinder, and when solving a number of other issues (see
[13], [15]).

Consider the following perturbed modified Mathieu equation

−y′′ + (chx) y + q (x) y = λy, 0 < x <∞, λ ∈ C, (1.1)

where the real potential q (x)satisfies the conditions

q (x) ∈ C(1) [0,∞] ,

∫ ∞

0
ex |q (x)| dx <∞. (1.2)

Note that equation (1.1) is a one-dimensional Schrödinger equation with an addi-
tional exponentially growing potential. The last equation is of particular interest
from a physical point of view ( see [2]).

It is known [13] that equation (1.1) with q (x) = 0 has a special solution
f0 (x, λ), which can be represented as

f0 (x, λ) =
(√

2e
x
2

)−1
e−

√
2e

x
2

∞∑
r=0

(−1)r cr

(√
2e

x
2

)−r
, (1.3)
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where

c0 = 1, c1 =
4λ+12

8 , c2 =
(4λ+12)(4λ+32)

822!
,

c3 =
(4λ+12)(4λ+32)(4λ+52)

833!
− 4

3! ,

c4 =
(4λ+12)(4λ+32)(4λ+52)(4λ+72)

844!
− 2

4! (4λ+ 13) , ...

(1.4)

Moreover, for each x the solution f0 (x, λ) is an entire function with respect to
λ. Note that, by virtue of (1.3), (1.4), for each fixed λ the function f0 (x, λ)
belongs to the space L2 (0,+∞). Of particular interest is the Jost-type solution
of the perturbed equation (1.1), i.e., solution f (x, λ) that satisfies the condition
f (x, λ) = f0 (x, λ) [1 + o (1)] , x→ ∞.

In the present paper, by means of the transformation operator, we find a
representation of a special Jost-type solution f (x, λ) of equation (1.1). When
obtaining an integral equation for the kernel of the representation, it turned out
to be natural to use the Riemann function method. The results of this paper can
be used to study various spectral problems for equation (1.1).

Note that a transformation operator with a condition at infinity is constructed
in [10], [11] for the one-dimensional Schrödinger equation with a rapidly decreas-
ing potential. At the same time, for the Schrödinger equations with unbounded
potentials, the construction of transformation operators encounters significant
difficulties in comparison with a rapidly decreasing potential. In this direction,
we note the works [4], [7], [12], [14], in which were studied the transformation
operators for the Schrödinger equation with an additional potential of the form
cxα, α = 1, 2.

Note that the usual Mathieu equations are special cases of the Hill equation.
For perturbations of the last equation, the transformation operators are studied
in detail(see [9] and references therein)

Let

σ0 (x) =

∫ ∞

x
|q (t)| dt, σ1 (x) =

∫ ∞

x
σ0 (t) dt . (1.5)

The main result of the present paper is as follows.

Theorem 1.1. If the potential q (x) satisfies condition (1.2), then for all values
of λ, the equation (1.1) has solution f (x, λ) representable as

f (x, λ) = f0 (x, λ) +

∫ +∞

x
K (x, t) f0 (t, λ) dt, (1.6)

where the kernel K (x, t) is a continuously differentiable function and satisfies the
following conditions:

|K (x, t)| ≤ 1

2
σ0

(
x+ t

2

)
eσ1(x), (1.7)

K (x, x) =
1

2

∫ +∞

x
q (t) dt. (1.8)
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2. Proof of the Theorem

Substituting the representation (1.6) into Eq. (1.1), we can obtain for the
kernel K(x, t) the following problem:

∂K (x, t)

∂x2
− ∂K (x, t)

∂t2
− (chx− cht+ q (x)) K (x, t) = 0, 0 < x < t, (2.1)

K (x, x) =
1

2

∫ ∞

x
q (t) dt, (2.2)

lim
x+t→∞

K (x, t) = 0. (2.3)

Setting U (ξ, η) = U
(
t+x
2 , t−x

2

)
= K (x, t) = K (ξ − η, ξ + η), we reduce the

problem (2.1) -(2.3) to the problem

L [U ] ≡ ∂2U (ξ, η)

∂ξ∂η
− 2shξ · shηU (ξ, η) = −U (ξ, η) q (ξ − η) (2.4)

U(ξ, 0) =
1

2

∫ ∞

ξ
q (α) dα, (2.5)

lim
ξ→∞

U(ξ, η) = 0, η > 0. (2.6)

Let ψ(ξ, η) = −U(ξ, η)q(ξ−η). Denote by R(ξ, η; ξ0, η0) the Riemann function
of the equation L [U ] = ψ(ξ, η), i.e., a function satisfying the equation

L∗(R) ≡ ∂2R

∂ξ ∂η
− 2shξ · shη · R = 0, 0 < η < η0 ≤ ξ0 < ξ <∞ (2.7)

and the following conditions on the characteristics:

R(ξ, η; ξ0, η0) |ξ=ξ0 = 1, 0 ≤ η ≤ η0, (2.8)

R(ξ, η; ξ0, η0) |η=η0 = 1, ξ0 ≤ ξ <∞. (2.9)

It is easy to check that the function R (ξ, η, ξ0, η0), defined by the formula

R (ξ, η, ξ0, η0) = J0 (z) =

∞∑
n=0

(−1)n

(n!)2

(z
2

)2n
, (2.10)

where Jn (z) is the Bessel function of the first kind and

z =
√
8 (chξ − chξ0) (chη0 − chη), ξ0 < ξ <∞, 0 < η < η0, (2.11)

satisfies relations (2.8)-(2.9). On the other hand, from (2.10), (2.11) it follows
that

∂R
∂ξ = 4shξ (chη0 − chη) J ′

0 (z) z
−1,

∂2R
∂ξ∂η = −2shξ · shηJ ′′

0 (z)− 2shξ · shηJ ′
0 (z) z

−1,

whence we have

∂2R

∂ξ∂η
− 2shξ · shη R = −2shξ · shη

(
J ′′
0 (z) + J ′

0 (z) z
−1 + J0 (z)

)
= 0,

i.e., the function (2.10) is the Riemann function of Eq. (2.4). Further, since z
takes real values, then, by virtue of the well-known inequality|Jn (z)| ≤ 1 (see [1])
we conclude that for all ξ0 ≤ ξ <∞, 0 ≤ η ≤ η0 the following inequality holds:

|R| ≤ 1. (2.12)
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On other hand, using the known [1] relations Jn+1 (z) + Jn−1 (z) =
2n
z Jn (z), we

obtain
∣∣∣J1(z)z

∣∣∣ ≤ 1, J ′′
0 (z)− J ′

0 (z) z
−1 = J2 (z). Differentiating (2.11) and taking

into account the last relations, we can write

∂R

∂ξ
= −4shξ (chη0 − chη) J1 (z) z

−1,
∂R

∂η
= 4 (chξ − chξ0) shηJ1 (z) z

−1,

∂2R

∂ξ2
= −4chξ (chη0 − chη) J1 (z) z

−1 + 2sh2ξ
chη0 − chη

chξ − chξ0
J2 (z) ,

∂2R

∂η2
= 4chη (chξ − chξ0) J1 (z) z

−1 + 2sh2η
chξ − chξ0
chη0 − chη

J2 (z) ,

∂2R

∂ξ∂η
= 4shξ · shη

[
J1 (z) z

−1 − 1

2
J2 (z)

]
.

Hence it follows that for each η ∈ (0, η0) the following relations hold:

∂R
∂ξ = O

(
eξ
)
, ∂R

∂η = O
(
eξ
)
, ∂2R
∂ξ∂η = O

(
eξ
)
, ξ → ∞,

∂2R
∂ξ2

= O
(
eξ
)
, ∂2R

∂η2
= O

(
eξ
)
, ξ → ∞.

(2.13)

Applying the Riemann method (see, e.g., [3]) to Eq. (2.4), we obtain the
following integral equation for U(ξ0, η0):

U (ξ0, η0) =
1

2

∫ ∞

ξ0

R (ξ, 0, ξ0, η0) q (ξ) dξ−

−
∫ ∞

ξ0

dξ

∫ η0

0
U (ξ, η)R (ξ, η, ξ0, η0) q (ξ − η) dη. (2.14)

Let us now deal with the question of the solvability of the integral equation (2.14).
We use the method of successive approximations. Let us put

U0(ξ0, η0) =
1

2

∫ ∞

ξ0

R(ξ, 0; ξ0, η0)q(ξ)dξ,

Un(ξ0, η0) = −
∫ ∞

ξ0

dξ

∫ η0

0
Un−1(ξ, η)q(ξ − η)R(ξ, η; ξ0, η0)dη.

From (2.12) it follows that

|U0(ξ0, η0)| ≤
1

2

∫ ∞

ξ0

|R(ξ, 0; ξ0, η0) | |q(ξ)| dξ ≤
1

2

∫ ∞

ξ0

|q (ξ)| dξ,

since ξ > ξ0, η < η0. Then, we will have

|U0 (ξ0, η0)| ≤
1

2
σ0 (ξ0) .

Further, since the function σ0 (ξ) is monotonically decreasing, taking into account
(1.5), we find that

|U1 (ξ0, η0)| ≤
∫ ∞

ξ0

dξ

∫ η0

0
|U0 (ξ, η)| · |q (ξ − η)| ·R (ξ, η; ξ0, η0) dη ≤

≤ 1

2

∫ ∞

ξ0

dξ

∫ η0

0
σ0 (ξ) |q (ξ − η)| dη ≤ 1

2

∫ ∞

ξ0

σ0 (ξ) dξ

∫ η0

0
|q (ξ − η)| dη ≤
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≤ σ0 (ξ0)

2

∫ ∞

ξ0

dξ

∫ η0

0
|q (ξ − η)| dη =

σ0 (ξ0)

2

∫ ∞

ξ0

dξ

∫ ξ

ξ−η0

|q (α)| dα ≤

≤ σ0 (ξ0)

2

∫ ∞

ξ0

dξ

∫ ∞

ξ−η0

|q (α)| dα ≤

≤ σ0 (ξ0)

2

∫ ∞

ξ0

σ0 (ξ − η0) dξ =
σ0 (ξ0)

2
σ1 (ξ0 − η0) .

Let now

|Un−1(ξ0, η0)| ≤
1

2
σ (ξ0)

(σ1 (ξ0 − η0))
n−1

(n− 1)!
.

In this case, we will have

|Un(ξ0, η0)| ≤
∫ ∞

ξ0

dξ

∫ η0

0
|q(ξ − η)R(ξ, η, ξ0, η0)Un−1(ξ, η)| dη ≤

1

2
σ0 (ξ0)

∫ ∞

ξ0

(σ1 (ξ − η0))
n−1

(n− 1)!

∫ ξ

ξ−η0

|q (α)| dαdξ ≤

≤ 1

2
σ0 (ξ0)

∫ ∞

ξ0

(σ1 (ξ − η0))
n−1

(n− 1)!

∫ ∞

ξ−η0

|q (α)| dαdξ ≤

= −1

2
σ0 (ξ0)

∫ ∞

ξ0

(σ1 (ξ − η0))
n−1

(n− 1)!
dσ1 (ξ − η0) =

1

2
σ0 (ξ0)

(σ1 (ξ0 − η0))
n

n!
.

Hence, it obviously follows that the series U (ξ0, η0) =
∞∑
n=0

Un (ξ0, η0) is absolutely

and uniformly convergent, its sum is a solution of (2.14) and U (ξ0, η0) satisfies
the inequality

|U (ξ0, η0)| ≤
1

2
σ0 (ξ0) e

σ1(ξ0−η0). (2.15)

Further, differentiating equations (2.14) and using (1.2), (2.13), and also taking
into account the identity R (ξ, η, ξ0, η0) = R (ξ0, η0, ξ, η), we find that the function
U (ξ0, η0) is twice continuously differentiable in the domain 0 ≤ η0 ≤ ξ0 <∞ and
the relations

∂U
∂ξ0

= O
(
eξ0+η0

)
, ∂U

∂η0
= O

(
eξ0+η0

)
, ∂2U
∂ξ0∂η0

= O
(
eξ0+η0

)
,

∂2U
∂ξ20

= O
(
eξ0+η0

)
, ∂2U

∂η20
= O

(
eξ0+η0

)
, ξ0 + η0 → ∞.

(2.16)

From here and from (2.15) it follows that the function K (x, t) = U
(
t+x
2 , t−x

2

)
is twice continuously differentiable in the domain 0 < x ≤ t < ∞ and relations
(1.7), (1.8) are true. Moreover, due to (2.16), for each fixed x the relations

∂K (x, t)

∂x
= O

(
et
)
,
∂K (x, t)

∂t
= O

(
et
)
,

∂2K (x, t)

∂x2
= O

(
et
)
,
∂2K (x, t)

∂t2
= O

(
et
)
, t→ ∞.

are true. From here and from (2.15) it follows that the function K (x, t) =
U
(
t+x
2 , t−x

2

)
satisfies problem (2.1)-(2.3). This completes the proof of the theo-

rem.
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