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LONG-RUN BEHAVIOR OF MULTIVARIATE MEANS

NADIA HAMIDA AND ANIS REZGUI

Abstract. In this paper, we considered a sequence of real numbers to
which we associate the sequence of averages with respect to a given
weighted arithmetic multivariate mean and to Bajraktarević mean. Then
we studied the long-run behavior of these averages’ sequences. A special
focus was given to bounded sequences with finite number of accumula-
tion points. In this case we proved, our main result, that is, although the
initial sequence is not convergent, the associated sequence of averages
converges to the average of its accumulation points, in both cases, the
weighted arithmetic and the Bajraktarević multivariate means.

1. Introduction and basic notions

The theory of means is as old as Pythagoras, the Greek Philosopher and Math-
ematician. He has introduced the arithmetic, geometric and harmonic means, at
about 520BC. Two hundred years later, Pappus of Alexandria introduced many
other means and he proved the well known inequalities that connect the arith-
metic, geometric and harmonic means. See [6] for an extensive historical point.

More recently, many researchers have investigated new families and types of
means, see [2, 5] for an exhaustive survey. It goes without saying that mean theory
is in the middle of many others and has real interactions as well as applications
therein, like the theories of inequalities, functional equations, and last but not
least, probability & statistics. For more details about all these interactions, we
give some references [1, 3, 10, 11, 12].

In the current paper, we are interested in multivariate means and more pre-
cisely to weighted quasi-arithmetic and to Bajraktarević multivariate means. Our
paper is organized as follows: In the current section, after a brief historical point
we introduce some notations and definitions. In Section 2 we state some tech-
nical lemmas that will be needed throughout the next section, we have made
this choice to make the reader comfortable while exploring the proofs of main
results. Section 3 is devoted to our main focus, that is the study of the long-run
behavior of the sequence of averages with respect to a given multivariate mean,
of a given initial sequence of real numbers which we suppose, not-convergent but
with a finite number of accumulation points, see Theorem 3.2, Corollary 3.2 and
Theorem 3.3.
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Now, let us state some definitions and notations that will be used throughout
the paper. I will always denote a nonempty open real interval. For a fixed integer
n ≥ 2, an n-variate mean Mn is a function of n-variables that satisfies, for any
(x1, · · · , xn) ∈ In,

min(x1, · · · , xn) ≤ Mn(x1, · · · , xn) ≤ max(x1, · · · , xn).

It is said to be symmetric if

Mn(x1, · · · , xn) = Mn(xσ(1), · · · , xσ(n))

for every permutation σ of the set {1, 2, ..., n}.
We say that Mn is 1-homogeneous if for all permissible t ∈ R

Mn(tx1, · · · , txn) = tMn(x1, · · · , xn).

A multivariate mean M is simply the given of a sequence of n-variate mean,
i.e

M = {Mn}n≥2,

where for each n ≥ 2, Mn is a given n-variate mean.
Our fundamental and generic example of multivariate mean is the well known
arithmetic mean A = {An}n≥2, defined for n ≥ 2 and x1, · · · , xn > 0, by

An(x1, · · · , xn) =
x1 + · · ·+ xn

n
. (1.1)

Actually, the arithmetic mean is the most known and the most used multivari-
ate mean, this is because of its simplicity, its algebraic compatibility, and its
statistical interpretation. In the sequel, we shall introduce three main ways to
generalize the arithmetic multivariate mean. For this, let Φ be a continuous and
strictly monotonic function Φ : I −→ R, and for n ≥ 2 and a given family of
real numbers (x1, · · · , xn) ∈ In, we consider the following definitions:

(i) The quasi-arithmetic n-variate mean

AΦ
n (x1, · · · , xn) = Φ−1

(
Φ(x1) + · · ·+Φ(xn)

n

)
. (1.2)

(ii) The weighted arithmetic n-variate mean

A(Φ,γ)
n (x1, · · · , xn) = Φ−1

(
γ1Φ(x1) + · · ·+ γnΦ(xn)∑n

i=1 γi

)
, (1.3)

where γ = {γ1, γ2, · · · } is a sequence of strictly positive numbers.
(iii) The n-variate Bajraktarević mean

A(Φ,p)
n (x1. · · · , xn) = Φ−1

(
p(x1)Φ(x1) + · · ·+ p(xn)Φ(xn)∑n

i=1 p(xi)

)
, (1.4)

where p : I → (0,+∞) is a given strictly positive function called weight
function.

In [7] and [8], one can find a good analytical characterization of quasi-arithmetic
multivariate means. It is clear that quasi-arithmetic mean (1.2) can be seen as a
particular case of weighted mean (1.3) and of Bajraktarević’s mean (1.4), however
the weighted multivariate mean doesn’t fit into Bajraktarević’s formulation.
Next we illustrate some examples of interest, in particular we recall that the class
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of quasi-arithmetic means and more generally the Bajraktarević’s class contains
many known multivariate means.

Examples 1. (i) We get back the classical arithmetic mean by letting Φ(x) = x
in (1.2)

AΦ
n (x1, · · · , xn) = An(x1, · · · , xn) =

∑n
i=1 xi
n

.

(ii) By choosing Φ(x) = ln(x) we get back the Geometric multivariate mean

AΦ
n (x1, · · · , xn) = Gn(x1, · · · , xn) = n

√√√√ n∏
i=1

xi.

(iii) If we choose Φ(x) = 1/x we get the Harmonic multivariate mean

AΦ
n (x1, · · · , xn) = Hn(x1, · · · , xn) =

(∑n
i=1 x

−1
i

n

)−1

.

(iv) Let r, s ∈ R and for x > 0 set

Φ(x) =

{
xmax(r,s)−min(r,s) if r ̸= s
ln(x) if r = s

and p(x) = xmin(r,s). If we apply the Bajraktarević formulation (1.4) we get
the sophisticated Gini mean

A(Φ,p)(x1, · · · , xn) = G(r,s)
n (x1, · · · , xn) =


(∑n

i=1 x
r
i∑n

i=1 x
s
i

) 1
r−s

if r ̸= s(∏n
i=1 x

xs
i

i

) 1∑n
i=1

xs
i if r = s

(1.5)

2. Some needed lemmas

In order to state our main results, we need more notations and some technical
lemmas. Let us denote by N the set of all positive integers, and for a given
infinite subset N ⊂ N, we denote by xN the sub-sequence of {xn}n∈N indexed
by elements of N and we recall that there should be a strictly increasing function
φ : N −→ N such that its range R(φ) = N . Let n ∈ N be fixed and set
Nn = {k ∈ N : k ≤ n}. The notation φ+ refers to the sub-inverse of φ defined
as follows

φ+(n) = sup
k∈N=R(φ)

{
φ−1(k) : k ≤ n

}
.

Then we get

|Nn| = φ+(n),

were |Nn| denotes the cardinal of Nn. Our first needed lemma states as follows.

Lemma 2.1. Let φ : N −→ N be a strictly increasing function and suppose that

it satisfies lim
n→+∞

φ(n)

n
= l. Then we have

l ∈ [1,+∞] and lim
n→+∞

φ+(n)

n
=

1

l
.
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Proof. Since φ is strictly increasing we get by induction φ(n) ≥ n, this implies
immediately that l ∈ [1,+∞], and by using the definition of φ+(n) we see that
lim

n→+∞
φ+(n) = +∞ and that φ

(
φ+(n)

)
≤ n < φ

(
φ+(n) + 1

)
. So, by dividing

by φ+(n) we finish the proof. □

The second needed lemma reads as follows.

Lemma 2.2. Let φ : N −→ N be a strictly increasing function such that

lim sup
n→+∞

φ(n)

n
= l ∈ [1,+∞].

Then there exist a subsequence {ψ(n)}n∈N of {φ(n)}n∈N and l∗ ∈ [1,+∞] such
that

lim
n→+∞

ψ(n)

n
= l∗.

Proof. Since φ : N → N is strictly increasing then for all p ≥ 1 we have

φ(n+ p) ≥ φ(n) + p.

Let ψ be the subsequence of φ defined as follows{
ψ(1) = φ(1)

ψ(n+ 1) = φ
(
1 + Σn

i=1ψ(i)
)

,

we have

ψ(n+ 1) ≥ φ
(
1 + Σn−1

i=1 ψ(i)
)
+ ψ(n) = 2ψ(n) ≥ n+ 1

n
ψ(n).

Then the sequence {ψ(n)
n

}n∈N is increasing, and so lim
n→+∞

ψ(n)

n
= l∗ for some

l∗ ∈ [1,+∞[ , which finishes the proof. □

Lemma 2.3. Let {xn}n∈N be a bounded sequence of elements of I and let x∞
be one of its accumulation points. Then there exists a sub-sequence xN that
converges to x∞ such that

|Nn|
n

−−−−→
n→+∞

θ,

for some θ ∈ [0, 1].

Proof. Let xM be a sub-sequence that converges to x∞ and let φ : N −→ N be
an increasing function such that M = R(φ).

Let lim sup
n→+∞

φ(n)

n
= l ∈ [1,+∞] then due to Lemma 2.2, there exists {ψ(n)},

a subsequence of {φ(n)}, such that lim
n→+∞

ψ(n)

n
= l∗ ∈ [1,+∞]. Denote by

N = R(ψ) and by Nn = {k ∈ N : k ≤ n}, then by using Lemma 2.1 we obtain

|Nn|
n

=
ψ+(n)

n
−−−−→
n→+∞

1

l∗
:= θ ∈ [0, 1].

We choose xN as the desired subsequence of {xn}n∈N, which finishes the proof. □
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Lemma 2.4. Let {xn}n∈N be a bounded sequence of elements of I, x∞ be one
of its accumulation points and xN be the sub-sequence given in Lemma 2.3. And
let {γn}n∈N be a given sequence of weights that converges to l ∈ (0,+∞). Then
there exists θ ∈ [0, 1] such that

lim
n→+∞

γ∗Nn

γ∗n
= θ, (2.1)

where

γ∗n =

n∑
k=1

γk and γ∗Nn
=
∑
k∈Nn

γk.

Proof. Write
γ∗Nn

γ∗n
=
γ∗Nn

|Nn|
× |Nn|

n
× n

γ∗n
.

The lim
n→+∞

|Nn|
n

= θ, for some θ ∈ [0, 1] due to Lemma 2.3. The limits of the two

other ratio exist by using Soltz-Cézaro Theorem, and worth l and
1

l
respectively,

which finishes the proof. □

3. Long run average behavior

Let {xn}n∈N be a bounded sequence of elements of I and M = {Mn}n≥2 a
multivariate mean defined on I, we associate a sequence of averages

{Mn(x1, · · · , xn)}n≥2 , (3.1)

such sequence of averages is called M-averages.
Our first result, see Corollary 3.1, shows that if the multivariate mean considered
is either the weighted-arithmetic or the Bajraktarević mean, then the associated
sequence of M-averages behaves asymptotically the same as the initial sequence
{xn}n∈N. Actually it is a direct application of Soltz-Cézaro Theorem, which we
recall here.

Theorem 3.1. [4]
If {vn}n∈N is a positive, strictly increasing and unbounded sequence and {un}n∈N
is an arbitrary real sequence, then

lim inf
n→+∞

un+1 − un
vn+1 − vn

≤ lim inf
n→+∞

un
vn

≤ lim sup
n→+∞

un
vn

≤ lim sup
n→+∞

un+1 − un
vn+1 − vn

Corollary 3.1. Let {xn}n∈N be a sequence of elements of I and Φ a strictly
monotonic function defined on I.

(i) If γ = {γn}n∈N is a sequence of weights that satisfies moreover
∑
n≥1

γn =

+∞, then

lim inf
n→+∞

xn ≤ lim inf
n→+∞

A(Φ,γ)
n (x1, · · · , xn) ≤ lim sup

n→+∞
A(Φ,γ)

n (x1, · · · , xn) ≤ lim sup
n→+∞

xn.

(3.2)
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(ii) If p : I −→ (0,+∞) is a weight function that is bounded below by c > 0,
then

lim inf
n→+∞

xn ≤ lim inf
n→+∞

A(Φ,p)
n (x1, · · · , xn) ≤ lim sup

n→+∞
A(Φ,p)

n (x1, · · · , xn) ≤ lim sup
n→+∞

xn.

(3.3)
(iii) If moreover the initial sequence {xn}n∈N is convergent, then both M-average

sequences are convergent and

lim
n→+∞

A(Φ,γ)
n (x1, · · · , xn) = lim

n→+∞
A(Φ,p)

n (x1, · · · , xn) = lim
n→+∞

xn. (3.4)

Proof. By using the property that for any sequence of real numbers {un}n∈N,
lim sup(−un) = − lim inf(un) we only need to prove the right hand side of in-

equalities (3.2) and (3.3). Also, since A(−Φ,γ)
n = A(Φ,γ)

n and A(−Φ,p)
n = A(Φ,p)

n ,
we can suppose that Φ is increasing without loss of generality. Then the proof
becomes straightforward from Theorem 3.1 with

(i) un = γ1Φ(x1) + · · ·+ γnΦ(xn) and vn =
∑n

i=1 γi.
(ii) un = p(x1)Φ(x1) + · · ·+ p(xn)Φ(xn) and vn =

∑n
i=1 p(xi).

Where we have used interchangeability between the two functions Φ, Φ−1 and
both inferior and superior limits. Indeed, for any given sequence of real numbers
{un}n∈N, Φ(lim supn un) = Φ(supn infk≥n uk) = supn infk≥nΦ(uk) = lim supnΦ(un),
where we have supposed that Φ is increasing, same for Φ−1. The conditions on
γn and on p guarantee the assumption on vn. □

The next Example shows a case where the initial sequence doesn’t converge
but the averages’ sequence does! This leads immediately to the main question of
the current work, see Question 1 below.

Example 3.1. Consider the alternate sequence xn = (−1)n, then

AΦ
2n(x1, · · · , x2n) = Φ−1

[
Φ(−1) + Φ(1) + · · ·+Φ(1)

2n

]
= Φ−1

[
Φ(−1) + Φ(1)

2

]
and

AΦ
2n+1(x1, · · · , x2n+1) = Φ−1

[
n(Φ(−1) + Φ(1))

2n+ 1
+

Φ(−1)

2n+ 1

]
.

So it is easy to see that

lim
n→+∞

AΦ(x1, · · · , xn) = Φ−1

[
Φ(−1) + Φ(1)

2

]
.

Question 1. If we suppose now that the initial sequence {xn}n∈N is only bounded
but not convergent, what can we say about the averages’ sequence, in both cases
weighted quasi-arithmetic and Bajraktarević ?

Since our initial sequence {xn}n∈N is bounded, it has either a finite or an
infinite number of accumulation points. The next theorem answers the above
question when our initial sequence has a finite number of accumulation points.
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Theorem 3.2. Let {xn}n∈N be a bounded sequence of elements of I, that has

a finite number of accumulation points {x(1)∞ , · · · , x(d)∞ } for some integer d ≥ 2.
Given Φ a continuous and strictly monotonic function defined on I and {γn}n≥1

a sequence of weights that satisfies the condition of Lemma 2.4. Then there exists
a family θ1, · · · , θd in [0, 1] that satisfies θ1 + · · ·+ θd = 1, such that

A(Φ,γ)
n (x1, · · · , xn) −−−−→

n→+∞
Φ−1

(
d∑

i=1

θiΦ(x
(i)
∞ )

)
.

Proof. We note that the proof is recursive so we just need to consider the case
d = 2, also because Φ and Φ−1 are both continuous, it is enough to consider
Φ = id the identity function. Let xN(1) be a sub-sequence of {xn}n∈N that

converges to x
(1)
∞ and such that there exists θ1 ∈ [0, 1] for which

γ∗
N

(1)
n

γ∗n
−−−−→
n→+∞

θ1, (3.5)

where existence of such sub-sequence is guaranteed by Lemma 2.4. Let N (2) ⊂
N\N (1) be an infinite subset such that xN(2) converges to x

(2)
∞ , again by using

Lemma 2.4 there exists θ2 ∈ [0, 1] such that

γ∗
N

(2)
n

γ∗n
−−−−→
n→+∞

θ2. (3.6)

We have either N\(N (1) ∪N (2)) is finite or infinite.
Suppose first that it is finite (actually it can be considered as empty), then

|N (2)
n | = n− |N (1)

n | and so θ2 = 1− θ1, let us decompose

A(id,γ)
n (x1, · · · , xn) =

γ1x1 + · · ·+ γnxn
γ∗n

=
1

γ∗n

∑
N

(1)
n

γkxk +
∑
N

(2)
n

γkxk


=

γ∗
N

(1)
n

γ∗n

 1

γ∗
N

(1)
n

∑
N

(1)
n

γkxk

+
γ∗
N

(2)
n

γ∗n

 1

γ∗
N

(2)
n

∑
N

(2)
n

γkxk

 .
We use Corollary 3.1 to get the convergence of the two weighted arithmetic means
between square brackets, and the two ratios’ limits above (3.5) and (3.6), to obtain
that

A(id,γ)
n (x1, · · · , xn)−−−−→

n→+∞
θ1x

(1)
∞ + (1− θ1)x

(2)
∞ .

Suppose now that |N\(N (1) ∪N (2))| = +∞, we consider N (3) ⊂ N\(N (1) ∪N (2))

such that |N (3)| = +∞ and xN(3) −−−−→
n→+∞

x
(1)
∞ , for instance. So, if |N\(N (1) ∪

N (2) ∪N (3))| <∞, we use a similar decomposition as above to obtain

A(id,γ)(x1, · · · , xn)−−−−→
n→+∞

(θ1 + θ3)x
(1)
∞ + θ2x

(2)
∞ ,

where

θ3 = lim
n→+∞

γ∗
N

(3)
n

γ∗n
= 1− (θ1 + θ2).
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A recursive process finishes the proof. □

If we consider Theorem 3.2 for a constant sequence γn = 1 for all n ∈ N, we
derive the next Corollary for the quasi-arithmetic multivariate mean.

Corollary 3.2. Let {xn}n∈N be a bounded sequence of elements of I, that has a

finite number of accumulation points {x(1)∞ , · · · , x(d)∞ } for some integer d ≥ 2, and
let Φ be a continuous and strictly monotonic function defined on I. Then there
exists a family θ1, · · · , θd in [0, 1], that satisfies θ1 + · · ·+ θd = 1, such that

AΦ
n (x1, · · · , xn) −−−−→n→+∞

Φ−1

(
d∑

i=1

θiΦ(x
(i)
∞ )

)
.

Theorem 3.3. Let {xn}n∈N be a bounded sequence of elements of I, that has

a finite number of accumulation points {x(1)∞ , · · · , x(d)∞ } for some integer d ≥ 2.
Given Φ a continuous and strictly monotonic function defined on I and let p :
I −→ (0,+∞) a continuous weight function that is bounded below by c > 0. Then
there exists a family α1, · · · , αd in [0, 1] that satisfies α1+ · · ·+αd = 1, such that

A(Φ,p)
n (x1, · · · , xn) −−−−→

n→+∞
Φ−1

(
d∑

i=1

αiΦ(x
(i)
∞ )

)
.

Proof. The proof is similar to the proof of Theorem 3.2, and so we proceed
recursively which means that it is sufficient to consider the case d = 2, also
because Φ and Φ−1 are both continuous, it is enough to consider Φ = id the

identity function. Let xN(1) be a sub-sequence of {xn}n∈N that converges to x
(1)
∞

and N (2) ⊂ N\N (1) be an infinite subset such that xN(2) converges to x
(2)
∞ . We

have either N\(N (1) ∪N (2)) is finite or infinite.
Suppose first that it is finite (actually it can be considered as empty), then

|N (2)
n | = n− |N (1)

n |, let us decompose

A(id,p)
n (x1, · · · , xn) =

p(x1)x1 + · · ·+ p(xn)xn
p∗n

=
1

p∗n

∑
N

(1)
n

p(xk)xk +
∑
N

(2)
n

p(xk)xk


=

p∗
N

(1)
n

p∗n

 1

p∗
N

(1)
n

∑
N

(1)
n

p(xk)xk

+
p∗
N

(2)
n

p∗n

 1

p∗
N

(2)
n

∑
N

(2)
n

p(xk)xk

 ,
where p∗n =

n∑
k=1

p(xk) and for i = 1, 2, p∗
N

(i)
n

=
∑
N

(i)
n

p(xk).

The two quantities between square brackets converges respectively to x
(1)
∞ and

x
(2)
∞ due to Corollary 3.1.

For i = 1, 2
p∗
N

(i)
n

p∗n
=

p∗
N

(i)
n

|N (i)
n |

× |N (i)
n |
n

× n

p∗n
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and then by using Corollary 3.2, Lemma 2.3 and the continuity of p, we obtain

lim
n→+∞

p∗
N

(i)
n

p∗n
= p(x(i)∞ )× θi ×

1

θ1p(x
(1)
∞ ) + θ2p(x

(2)
∞ )

= α1 ∈ [0, 1].

Finally we get

A(id,γ)
n (x1, · · · , xn)−−−−→

n→+∞
α1x

(1)
∞ + (1− α1)x

(2)
∞ .

We finish the proof recursively as we did for Theorem 3.2 . □

Remarks 1. It is worth noting that, despite the different formulations of the
multivariate weighted mean and the Bajraktarević one, Theorems 3.2 and 3.3
shows that in average and in the long run they behave exactly the same as the
multivariate quasi-arithmetic mean, see Corollary 3.2.
This could be interpreted in the scope of huge masses’ behavior, more precisely
it inspires us that if a huge mass of individuals has a finite number of options,
in the long run and with respect to all types of averages, we will end up with
behavior that is the natural average of all options.
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