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Abstract: Fibonacci polynomials have been generalized mainly by two ways: by maintaining the recurrence
relation and varying the initial conditions and by varying the recurrence relation and maintaining the
initial conditions. In this paper, both the recurrence relation and initial conditions of generalized Fibonacci
polynomials are varied and defined by recurrence relation as Rn(x) = axRn−1(x) + bRn−2(x) for all n ≥ 2,
with initial conditions R0(x) = 2p and R1(x) = px + q where a and b are positive integers and p and q
are non-negative integers. Further some fundamental properties of these generalized polynomials such as
explicit sum formula, sum of first n terms, sum of first n terms with (odd or even) indices and generalized
identity are derived by Binet’s formula and generating function only.
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1. Introduction

F ibonacci polynomials [1] are special cases of Chebyshev polynomials and are defined recursively by

Fn(x) = xFn−1(x) + Fn−2(x), (1)

for all n ≥ 2 with F0(x) = 0 and F1(x) = 1.
Lucas polynomials [1] are defined by

Ln(x) = xLn−1(x) + Ln−2(x), (2)

for all n ≥ 2 with L0(x) = 2 and L1(x) = x.
Pell polynomials [2] are defined by

Pnx = 2xPn−1(x) + Pn−2(x), (3)

for all n ≥ 2 with P0(x) = 0 and P1(x) = 1.
Generating function of Fibonacci polynomials is given by

∞

∑
n=0

Fn(x)tn =
t

1− xt− t2 . (4)

Explicit sum formula for Fibonacci polynomials is given by

Fn(x) =

⌊
n− 1

2

⌋
∑
k=0

(
n− k− 1

k

)
xn−2k−1. (5)

Horadam polynomials sequence [3] hn(x), for n ≥ 3 is defined by recurrence relations hn(x) =

pxhn−1(x) + qhn−2(x), with initial conditions h1(x) = a and h2(x) = bx, where p, q, a and b are integers.
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Generalized Fibonacci polynomials and some identities [4] are defined by

wn(x) = xwn−1(x) + wn−2(x),

for n ≥ 2 with w0(x) = 2b and w1(x) = a + b, where a and b are integers.
Generalized Fibonacci-Like polynomials [5] are defined by the recurrence relation:

mn(x) = xmn−1(x) + mn−2(x),

with m0(x) = 2s and m1(x) = 1 + s, where s is an integer.
Fibonacci-like polynomials [6] are defined by the recurrence relation

Sn(x) = xSn−1(x) + Sn−2(x),

n ≥ 2 with S0(x) = 2 and S1(x) = 2x.
Generalized Fibonacci polynomials [7] are defined by the recurrence relation

bn(x) = xbn−1(x) + bn−2(x),

n ≥ 2 with b0(x) = 2b and b1(x) = s, where b and s are integer.
In this paper, generalized Fibonacci polynomials is studied by varying both the recurrence relation and

initial conditions. The properties of these polynomials are derived by means of Binet’s formula and generating
function. Few terms of generalized Fibonacci polynomials and characteristic equation of the recurrence
relation are presented in Section 2. In Section 3 Binet’s formula is obtained and generating function is also
obtained in Section 4. Further some properties of these polynomials are presented in Section 5 and finally in
Section 6 conclusion is given.

2. Generalized Fibonacci Polynomials

We define generalized Fibonacci polynomials by the recurrence relation

Rn(x) = axRn−1(x) + bRn−2(x), n ≥ 2, (6)

with initial conditions R0(x) = 2p and R1(x) = px + q where a and b are positive integers and p and q are non
negative integers.

Few terms of generalized Fibonacci sequence are as follows:

R0(x) = 2p,

R1(x) = px + q,

R2(x) = apx2 + aqx + 2bp,

R3(x) = a2 px3 + a2qx2 + 2abpx + bpx + bq,

R4(x) = a3 px4 + a3qx3 + 2a2bpx2 + abpx2 + abqx + abpx2 + abqx + 2b2 p

and so on.
The characteristic equation for the recurrence relation (6) is

t2 − axt− b = 0. (7)

This equation has two real and distinct roots;

α(x) =
ax +

√
a2x2 + 4b
2

and

β(x) =
ax−

√
a2x2 + 4b
2

.
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Also from these roots, we have

α(x)β(x) = −b,

α(x) + β(x) = ax,

α(x)− β(x) =
√

a2x2 + 4b,

α2(x) + β2(x) = a2x2 + 2b,

α2(x) = axα(x) + b,

β2(x) = axβ(x) + b.

Generalized Fibonacci polynomials (6) generalizes, Fibonacci polynomials, Lucas polynomials and Pell
polynomials at different values of a, b, p and q.

• For a = b = q = 1 and p = 0, we obtain Fibonacci polynomials.
• For a = b = p = 1 and q = 0, we obtain Lucas polynomials.
• For a = 2, b = q = 1 and p = 0, we obtain Pell polynomials.

Further for x = 1 we obtain the corresponding sequences of these polynomials.

3. Binet’s formula for generalized Fibonacci polynomials.

Theorem 1 (Binet’s formula). The nth term of generalized Fibonacci polynomials is given by

Rn(x) = Aαn(x) + Bβn(x) =
1

α(x)− β(x)

[
R1(x)(αn(x)− βn(x)) + bR0(x)(αn−1(x)− βn−1(x))

]
. (8)

Proof. The characteristics Equation (7) has real and distinct roots. The solution of the recurrence relation (6) is
therefore of the form

Rn(x) = Aαn(x) + Bβn(x), (9)

where A and B are constants and α(x) =
ax +

√
a2x2 + 4b
2

and β(x) =
ax−

√
a2x2 + 4b
2

.
Setting n = 0 and n = 1 in (9), we obtain

A + B = R0(x)

and
Aα(x) + Bβ(x) = R1(x)

respectively.
Solving these equations simultaneously, we obtain

A =
R1(x)− β(x)R0(x)

α(x)− β(x)

and

B =
α(x)R0(x)− R1(x)

α(x)− β(x)
.

Substituting for A and B in (9), we get

Rn(x) =
(

R1(x)− β(x)R0(x)
α(x)− β(x)

)
αn(x)−

(
R1(x)− α(x)R0(x)

α(x)− β(x)

)
βn(x)

=
1

α(x)− β(x)

[
R1(x)(αn(x)− βn(x)) + bR0(x)(αn−1(x)− βn−1(x))

]
.

Hence the proof.

Remark 1. We have that
A + B = R0(x), (10)
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Aα(x) + Bβ(x) = R1(x), (11)

Aβ(x) + Bα(x) = axR0(x)− R1(x), (12)

Aβ2(x) + Bα2(x) = a2x2R0(x)− axR1(x) + bR0(x), (13)

and

AB =
R0(x)R2(x)− R2

1(x)
(α(x)−β(x))2 . (14)

4. Generating function for generalized Fibonacci polynomials

Theorem 2 (Generating function). Generating function for generalized Fibonacci polynomials is given by

∞

∑
n=0

Rn(x)tn =
2p + t [(px + q)− 2axp]

1− axt− bt2 . (15)

Proof. Applying power series to the generalized Fibonacci polynomial
∞

∑
n=0

Rn(x)tn, we have

2p + (px + q)t + (ax2 p + axq + 2bp)t2 + · · · =
∞

∑
n=0

Rn(x)tn.

Now, multiplying the generating series by (1− axt− bt2), where (1− axt− bt2) 6= 0, we get

(1− axt− bt2)
∞

∑
n=0

Rn(x)tn =
∞

∑
n=0

Rn(x)tn − ax
∞

∑
n=0

Rn(x)tn+1 − b
∞

∑
n=0

Rn(x)tn+2

=

[
R0(x) + R1(x)t +

∞

∑
n=2

Rn(x)tn

]
− ax

[
R0(x)t +

∞

∑
n=2

Rn−1(x)tn

]
− b

∞

∑
n=2

Rn−2(x)tn

= R0(x) + [R1(x)− axR0(x)]t +
∞

∑
n=2

[Rn(x)− axRn−1(x)− bRn−2(x)]tn

= 2p + [(px + q)− 2apx]t +
∞

∑
n=2

[axRn−1(x) + bRn−2(x)− axRn−1(x)− bRn−2(x)]

= 2p + [(px + q)− 2apx] t.

Therefore (
1− axt− bt2

) ∞

∑
n=0

Rn(x)tn = 2p + [(px + q)− 2apx] t.

Hence
∞

∑
n=0

Rn(x)tn =
2p + [(px + q)− 2apx]t

1− axt− bt2 .

Remark 2. If a = b = q = 1 and p = 0 in (15), we obtain generating functions for Fibonacci polynomials (4).

5. Some properties of generalized Fibonacci polynomials

In this section, we obtain some properties of generalized polynomials by means of Binet’s formula and
generating function.

Proposition 1 (Explicit sum formula). Let Rn(x) be the nth generalized Fibonacci polynomials, then
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Rn(x) = 2p

⌊n
2

⌋
∑
k=0

(
n− k

k

)
+ (ax)n−2kbk + (px + q− 2apx)

⌊
n− 1

2

⌋
∑
k=0

(
n− k− 1

k

)
(ax)n−2k−1bk, (16)

where bnc is the greatest integer less than or equal to n.

Proof. By generating function (15), we have

∞

∑
n=0

Rn(x)tn =
2p + (px + q− 2apx)t

1− axt− bt2

= [2p + (px + q− 2apx)t][1− (ax + bt)t]−1

= [2p + (px + q− 2apx)t]
∞

∑
n=0

(ax + bt)ntn

= [2p + (px + q− 2apx)t]
∞

∑
n=0

tn
n

∑
k=0

(
n
k

)
(ax)n−k(bt)k

= [2p + (px + q− 2apx)t]
∞

∑
n=0

n

∑
k=0

n!
k!(n− k)!

(ax)n−kbktn+k.

Now replacing n with n + k, we get

∞

∑
n=0

Rn(x)tn = [2p + (px + q− 2apx)t]
∞

∑
n=0

∞

∑
k=0

(n + k)!
k!n!

(ax)nbktn+2k

= [2p + (px + q− 2apx)t]
∞

∑
n=0

⌊n
2

⌋
∑
n=0

(n− k)!
k!(n− 2k)!

(ax)n−2kbktn.

Thus the sum equals to

∞

∑
n=0

2p

⌊n
2

⌋
∑
k=0

(n− k)!
k!(n− 2k)!

(ax)n−2kbk

 tn +
∞

∑
n=0

(px + q− 2apx)

⌊n
2

⌋
∑
k=0

(n− k)!
k!(n− 2k)!

(ax)n−2kbk

 tn+1.

Equating the coefficient of tn on both sides, we obtain

Rn(x) = 2p

⌊n
2

⌋
∑
k=0

(
n− k

k

)
(ax)n−2kbk + (px + q− 2apx)

⌊n− 1
2

⌋
∑
k=0

(
n− k− 1

k

)
(ax)n−2k−1bk.

Proposition 2 (Sum of first n terms). The sum of the first n terms of generalized Fibonacci polynomials is given by

n−1

∑
k=0

Rk(x) =
Rn(x) + bRn−1(x)− (R1(x)− axR0(x))− R0(x)

ax + b− 1
.

Proof. Using Binet’s formula (8), we have

n−1

∑
k=0

Rk(x) =
n−1

∑
k=0

(
Aαk(x) + Bβk(x)

)
,

where A =
R1(x)− β(x)R0(x)

α(x)− β(x)
and B =

α(x)R0(x)− R1(x)
α(x)− β(x)

. It follows that
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n−1

∑
k=0

Rk(x) = A
n−1

∑
k=0

αk(x) + B
n−1

∑
k=0

βk(x)

=
A (αn(x)− 1)

α(x)− 1
+

B (βn(x)− 1)
β(x)− 1

=
A + B− (Aβ(x) + Bα(x))− (Aαn(x) + Bβn(x))

α(x)β(x)− α(x)− β(x) + 1
+

α(x)β(x)(Aαn−1(x) + Bβn−1(x))
α(x)β(x)− α(x)− β(x) + 1

.

Since α(x) + β(x) = ax and α(x)β(x) = −b and using (8), (10) and (12), we obtain

n−1

∑
k=0

Rk(x) =
Rn(x) + bRn−1(x)− (R1(x)− axR0(x))− R0(x)

ax + b− 1
.

Proposition 3 (Sum of first n terms with odd indices). The sum of first n terms with odd indices of generalized
Fibonacci polynomials is given by

n−1

∑
k=0

R2k+1(x) =
R2n+1(x)− b2R2n−1(x) + b(R1(x)− axR0(x))− R1(x)

a2x2 − b2 + 2b− 1
.

Proof. Using Binet’s formula (8), we have

n−1

∑
k=0

R2k+1(x) =
n−1

∑
k=0

(
Aα2k+1(x) + Bβ2k+1(x)

)
= A

n−1

∑
k=0

α2k+1(x) + B
n−1

∑
k=0

β2k+1(x)

=
A
(
α2n+1(x)− α(x)

)
α2(x)− 1

+
B
(

β2n+1(x)− β(x)
)

β2(x)− 1
.

Thus

n−1

∑
k=0

R2k+1(x) =
Aα(x) + Bβ(x)− α(x)β(x)(Aβ(x) + Bα(x))

(α(x)β(x))2 − α2(x)− β2(x) + 1

− Aα2n+1(x) + Bβ2n+1(x) + (α(x)β(x))2(Aα2n−1(x) + Bβ2n−1(x))
(α(x)β(x))2 − α2(x)− β2(x) + 1

.

Since α(x)β(x) = −b and α2(x) + β2(x) = a2x2 + 2b then using (8), (11) and (12), we obtain

n−1

∑
k=0

R2k+1(x) =
R2n+1(x)− b2R2n−1(x) + b(R1(x)− axR0(x))− R1(x)

a2x2 − b2 + 2b− 1
.

Proposition 4 (Sum of first n terms with even indices). The sum of first n terms of generalized Fibonacci sequences
with even indices is given by

n−1

∑
k=0

R2k(x) =
R2n(x)− b2R2n−2(x) + (a2x2R0(x)− axR1(x) + bR0(x))− R0(x)

a2x2 − b2 + 2b− 1
.
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Proof. Using Binet’s formula (8), we have

n−1

∑
k=0

R2k(x) =
n−1

∑
k=0

(
Aα2k(x) + Bβ2k(x)

)
= A

n−1

∑
k=0

α2k(x) + B
n−1

∑
k=0

β2k(x) =
A
(
α2n(x)− 1

)
α2(x)− 1

+
B
(

β2n(x)− 1
)

β2(x)− 1
.

Hence

n−1

∑
k=0

R2k(x) =
A + B− (Aβ2(x) + Bα2(x))− (Aα2n(x) + Bβ2n(x))

(α(x)β(x))2 − α2(x)− β2(x) + 1
+

(α(x)β(x))2(Aα2n−2(x) + Bβ2n−2(x))
(α(x)β(x))2 − α2(x)− β2(x) + 1

.

Since α2(x) + β2(x) = a2x2 + 2b, and α(x)β(x) = −b, then using (8), (10) and (13) , we obtain

n−1

∑
k=0

R2k(x) =
R2n(x)− b2R2n−2(x) + (a2x2R0(x)− axR1(x) + bR0(x))− R0(x)

a2x2 − b2 + 2b− 1
.

Proposition 5. For every positive integer n, we have

n

∑
k=1

R3k(x) =
R3n+3(x) + b3R3n(x)− R3(x)− bR0(x)

a3x3 + b3 + 3abx− 1
.

Proof. By Binet’s formula (8), we have

n

∑
k=1

R3k(x) =
n

∑
k=1

(
Aα3k(x) + Bβ3k(x)

)
=

Aα3(x)
(
α3n(x)− 1

)
α3(x)− 1

+
Bβ3(x)

(
β3n(x)− 1

)
β3(x)− 1

.

Thus

n

∑
k=0

R3k(x) =
(Aα3(x) + Bβ3(x))− (Aα3β3 + Bβ3α3)

(α(x)β(x))3 − α3(x)− β3(x) + 1

+
(Aα3n+3(x)β3(x) + Bβ3n+3(x)α3(x))− (Aα3n+3(x) + Bβ3n+3(x))

(α(x)β(x))3 − α3(x)− β3(x) + 1
.

=
(Aα3(x) + Bβ3(x))− α3(x)β3(x)(A + B)

(α(x)β(x))3 − α3(x)− β3(x) + 1

+
α3(x)β3(x)(Aα3n(x) + Bβ3n(x))− (Aα3n+3(x) + Bβ3n+3(x))

(α(x)β(x))3 − α3(x)− β3(x) + 1
.

Since α3(x) + β3(x) = a3x3 + 3abx, and α(x)β(x) = −b, then by Equations (8) and (10), we get

n

∑
k=1

R3k(x) =
R3n+3(x) + b3R3n(x)− R3(x)− bR0(x)

a3x3 + b3 + 3abx− 1
.

Hence the proof.

Proposition 6. For every positive integer n, we have

n

∑
k=1

R3k−1(x) =
R3n+2(x) + b3R3n−1(x) + b2(axR0(x)− R1(x))− R2(x)

a3x3 + b3 + 3abx− 1
.

Proof. By Binet’s formula (8), we have

n

∑
k=1

R3k−1(x) =
n

∑
k=1

(
Aα3k−1(x) + Bβ3k−1(x)

)
=

Aα2(x)
(
α3n(x)− 1

)
α3(x)− 1

+
Bβ2(x)

(
β3n(x)− 1

)
β3(x)− 1

.
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This sum gives

n

∑
k=1

R3k−1(x) =
Aα2(x) + Bβ2(x)− (Aα2(x)β3(x) + Bα3(x)β2(x))

(α(x)β(x))3 − α3(x)− β3(x) + 1

+
Aα3n+2(x)β3(x) + Bβ3n+2(x)α3(x)− Aα3n+2(x) + Bβ3n+2(x)

(α(x)β(x))3 − α3(x)− β3(x) + 1

=
Aα2(x) + Bβ2(x)− (α(x)β(x))2(Aβ(x) + Bα(x))

(α(x)β(x))3 − α3(x)− β3(x) + 1

+
(α(x)β(x))3(Aα3n−1(x) + Bβ3n−1(x))− Aα3n+2(x) + Bβ3n+2(x)

(α(x)β(x))3 − α3(x)− β3(x) + 1
.

Since α3(x) + β3(x) = a3x3 + 3abx, and α(x)β(x) = −b, then making use of (8) and (12) , we obtain

n

∑
k=1

R3k−1(x) =
R3n+2(x) + b3R3n−1(x) + b2(axR0(x)− R1(x))− R2(x)

a3x3 + b3 + 3abx− 1
.

Proposition 7. For every positive integer n, we have

n

∑
k=1

R3k−2(x) =
R3n+1(x) + b3R3n−2(x)− b

(
a2x2R0(x)− axR1(x) + bR0(x)

)
− R1(x)

a3x3 + b3 + 3abx− 1
.

Proof. By Binet’s formula (8), we get

n

∑
k=1

R3k−2(x) =
n

∑
k=1

(
Aα3k−2(x) + Bβ3k−2(x)

)
= A

n

∑
k=1

α3k−2(x) + B
n

∑
k=1

β3k−2(x)

=
Aα(x)

(
α3n(x)− 1

)
α3(x)− 1

+
Bβ(x)

(
β3n(x)− 1

)
β3(x)− 1

.

This Sum gives

n

∑
k=1

R3k−2(x) =
Aα(x) + Bβ(x)− Aαβ3(x) + Bβα3(x)

(α(x)β(x))3 − α3(x)− β3(x) + 1

+
Aα3n+1(x)β3(x) + Bβ3n+1(x)α3(x)− Aα3n+1(x) + Bβ3n+1(x)

(α(x)β(x))3 − α3(x)− β3(x) + 1

=
Aα(x) + Bβ(x)− α(x)β(x)(Aαβ2(x) + Bα2(x))

(α(x)β(x))3 − α3(x)− β3(x) + 1

+
(α(x)β(x))3(Aα3n−2(x) + Bβ3n−2(x))− Aα3n+1(x) + Bβ3n+1(x)

(α(x)β(x))3 − α3(x)− β3(x) + 1
.

Since α3(x) + β3(x) = a3x3 + 3abx, and α(x)β(x) = −b, then making use of (8) and (13), we obtain

n

∑
k=1

R3k−2(x) =
R3n+1(x) + b3R3n−2(x)− b

(
a2x2R0(x)− axR1(x) + bR0(x)

)
− R1(x)

a3x3 + b3 + 3abx− 1
.

Theorem 3 (Generalized identity). Let Rn(x) be the nth generalized Fibonacci polynomials. Then
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Rm(x)Rn(x)− Rm−k(x)Rn+k(x)

= (−b)m−k

[
(R1(x)Rk(x)− R0(x)Rk+1(x))(R1(x)Rn−m+k(x)− R0(x)Rn−m+k+1(x)

R2
1(x)− R0(x)R2(x))

]
, (17)

where n > m ≥ k ≥ 1.

Proof. Using Binet’s formula (8) to the left hand side, we have

LHS = (Aαm(x) + Bβm(x))(Aαn(x) + Bβn(x))−
(

Aαm−k(x) + Bβm−k(x)
)(

Aαn+k(x) + Bβn+k(x)
)

= AB
(

αk(x)− βk(x)
)[αm(x)βn(x)

αk(x)
− αn(x)βm(x)

βk(x)

]
= AB

(αk(x)− βk(x))
(α(x)β(x))k

(
αm(x)βn+k(x)− αn+k(x)βm(x)

)
= −AB(−b)m−k

(
αk(x)− βk(x)

)(
αn−m+k(x)− βn−m+k(x)

)
.

Since −AB =
R2

1(x)− R0(x)R2(x)
(α(x)− β(x))2 by (14), then

Rm(x)Rn(x)− Rm−k(x)Rn+k(x) =
R2

1(x)− R0(x)R2(x)
(α(x)− β(x))2 (−b)m−k

[
(αk(x)− βk(x))(αn−m+k(x)− βn−m+k(x))

]
=
(

R2
1(x)− R0(x)R2(x)

)
(−b)m−k

[(
αk(x)− βk(x)
α(x)− β(x)

)(
αn−m+k(x)− βn−m+k(x)

α(x)− β(x)

)]
.

From
αk(x)− βk(x)
α(x)− β(x)

=
R1(x)Rk(x)− R0(x)Rk+1(x)

R2
1(x)− R0(x)R2(x)

and
αn−m+k(x)− βn−m+k(x)

α(x)− β(x)
=

R1(x)Rn−m+k(x)− R0(x)Rn−m+k+1(x)
R2

1(x)− R0(x)R2(x)
,

we obtain our desired result.

Corollary 1 (Catalan’s identity). If m = n in the generalized identity (17), we obtain

R2
n(x)− Rn−k(x)Rn+k(x) =

(−b)m−k

R2
1(x)− R0(x)R2(x)

[R1(x)Rk(x)− R0(x)Rk+1(x)]2,

where n > k ≥ 1.

Corollary 2 (Cassini’s identity). If m = n and k = 1 in the generalized identity (17), we obtain

R2
1(x)− Rn−1(x)Rn+1(x) = (−b)n−1

[
R2

1(x)− R0(x)R2(x)
]
,

for n ≥ 1.

Corollary 3 (d’Ocagne’s identity). If n = m, m = n + 1 and k = 1 in the generalized identity (17), we obtain

Rm(x)Rn+1(x)− Rm+1(x)Rn(x) = (−b)n[R1(x)Rm−n(x)− R0(x)Rm−n+1(x)],

where m > n ≥ 1.
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6. Conclusion

In this paper generalized Fibonacci polynomials is defined by recurrence relations (6). Binet’s formula
(8) and generating function of these polynomials (15) are derived. Further explicit sum formula, sum of first
n terms, sum of first n terms with (odd or even )indices and generalized identity (17) from which we obtain
Catalan’s identity, Cassini’s identity and d’Ocagne’s identity are also derived.
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