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1. Introduction

C onvex functions are important in the theory of mathematical inequalities, many well-known results
are direct implications of these functions. The concepts of various types of new convex functions are

obtained from the definition of convex functions. Their generalizations, extensions and refinements proved
very beneficial in mathematical analysis, mathematical statistics, optimization theory, graph theory.

The main objective of this paper is to obtain refinements of two versions of the Hadamard inequality for
Caputo fractional derivatives of convex functions proved [1,2]. The refinements of their error estimations are
also established. For this purpose we employ the definition of strongly convex functions. In the following we
give the definitions of functions utilized for getting the new and related results.

Definition 1. [3] A function ¢ : I — R, where I is an interval in R, is said to be convex if undermentioned
inequality holds:
P(xoz+ (1 —2)yo) < ztp(x0) + (1 —2)¥(yo), z € [0,1], x0,y0 € L. (1)

Strongly convex function was introduced by Polyak in [4].

Definition 2. Let D be a convex subset of X, (X, ||.||) be a normed space. A function ¢ : D C X — R is called
strongly convex function with modulus C if it satisfies

(xoz + (1= 2)yo) < z¢p(x0) + (1 - 2)¢(yo) — Cz(1 — 2)|x0 — ol 2

Vx0,y0 € D,z € [0,1] and C > 0. If we take C = 0 in (2) we get inequality (1).

Many authors have been inventing the properties and applications of strongly convex function for more
information, [5-10]. In this paper we will use this definition for normed space R.

A well-known inequality named the Hadamard inequality is an equivalent interpretation of convex
function. It is given as follows:
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Theorem 1. Let p : I — R be a convex function on interval I C R and xo,yo € I where xog < yo. Then the
undermentioned inequality holds:

X0 + Yo 1w ¥(x0) + ¢ (vo)
o (050 < o [ plr < SR ©)

If order in (3) is reversed, then it holds for concave function.

In the literature of mathematical inequalities the Hadamard inequality appears in various forms for
convex and related functions. In [11] it was studied for Riemann-Liouville fractional integrals and after it many
researchers started to get its versions for different kinds of fractional integral operators and functions. In [1,2],
we have derived such inequalities for Caputo fractional derivatives. For the fractional integral inequalities we
refer readers to [11-25]. The Caputo fractional derivatives is defined as follows.

Definition 3. [26] Let p > Oand B ¢ {1,2,3,..}, n = [B]+1, ¢ € AC"[xg,o]. Then Caputo fractional
derivatives of order § are defined as:

p _ 1 * pln(z)
DL p(x) = =) (/XO (x—z)ﬁ—"+1dz’x > X, @)

and

(=" /’W P (2)

Tn—p) )x (Z_x)ﬁ_n+1dz,x<yo. (5)

Db p(x) =

If B =n € {1,2,3,..} and usual derivative of order n exists, then (CDfOJr )(x) = 9" (x), whereas

(CDfofl/)) (x) = (=1)"p (x). In particular we have
("D ) (x) = (“Dy_9)(x) = ¢(x), (6)
wheren =1and g = 0.

Next, we give the results which are directly related to the findings of this paper. Farid ef al., [1] proved
the undermentioned Hadamard inequality for Caputo fractional derivatives:

Theorem 2. Let ¢ : [xq,yo] — R be the function with ¢ € C"[xq,yo] and 0 < xo < yo. Also let (") be positive and
convex function on [xg, yo|. Then the undermentioned inequality holds for Caputo fractional derivatives:

07 (252) < F (40 ) b+ -t (0 ) ] < 03800

Lemma 1. [1] For Caputo fractional derivatives the following identity holds:

(n) () —
P x0) + ¢ yo) _ T(n—p+1) [(Cngw)(yoH(—l)”(CD’gl/’)(xo)]

2  2(yo — x0)" P %

_ 1
_ W’ZJ /0 (1= 2)"=F = 2" D) (20 + (1 - 2)yo) dz. ®)

Farid et al., [1] also proved the undermentioned inequality for Caputo fractional derivatives:

Theorem 3. Let 0 < xo < yo, ¥ € C"1[xq,yo] and also let |("*+1)| be convex. Then for Caputo fractional derivatives
we have:

(M) (x (n) n—
|¢ (x0) + ") (o) _ T(n—p+1) [(CDfﬂ)(yo)+<—1>"<CD§J¢><xo>}‘

2 2(yg — x0)" P
< s (1 s ) [l D 0+ 1 o). ©)
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Kang et al., [2] proved the undermentioned version of the Hadamard inequality for Caputo fractional
derivatives:

Theorem 4. Under assumptions of Theorem 2, for Caputo fractional derivatives we have:

2"=F-1r(n - p+1
0 (05) < F Gt |(Plaga, ) 0+ 07 (Dl o) )

(yo — x0)
- $"(x0) ; ¢ (%) (10)

Lemma 2. [2] For Caputo fractional derivatives the following identity holds:

271*/9711_'(1’1 - B+ 1) B P o M
(yO _ xo)n—ﬁ |:(CD(X0+j0) lab)(yO) + ( ) (CD(xo+y0) )(xo):| 1’L7 < 5 )

_ Yo —Xo ! n—B,(n+1) [ 2 2—z _ L1=Byp(n+1) 2—
' [/0 zZ" Py 2x0+ > Yo /0 l,b > x0+2y0 dz (11)

Kang et al., [2] also proved the undermentioned inequalities for Caputo fractional derivatives:

Theorem 5. Let ¢ : [x,y0] — R be a differentiable mapping on (xo,yo) with ¢ € C" [xo,yo] and xo < yo. If
[+ is convex on [xq, yo] for q > 1, then for Caputo fractional derivatives we have:

2" P IT(n—B+1) [ cp ngCnp o (%0t o
(Yo — x0)"~F {( Pleagm)- ¥) (o) + (=1 D("O?ff))lp)(x())] 4 ( 2 >’

==

Yo — X 1 % " ;
= 4(n0—ﬁ+01) (2(n—ﬁ+2)> [((”_5“”4’( Do)l + (n— p+3)9" (o))

+ (=D 1+ (0= B+ D" D 0)7) | (12)

Theorem 6. [2] Under assumptions of Theorem 3, for Caputo fractional derivatives we have:

2" P~ B+1) [ cppp n(Cpp _ptn (Yot Yo
o B (D 0)00) + (1D )| 4 (270

cozno( 1 > 0D )l 3 o)\ T (B (o)l + gD (o)l |
- 4 np—Bp+1 4 4

Yo — Xo 4 P ) i)
= 4 (3(np—/3p+1)> [t (o) | + 19" (wo) ], (13)

where 1 + 1—1.

The paper is organized in the manner that, in Section 2 we give two versions of the Hadamard
inequality via Caputo fractional derivatives of strongly convex functions. These inequalities give refinements
of Theorems 2 and 4. In Section 3, by employing identities stated in Lemmas 1 and 2, the refinements of
Theorems 3 and 6 are presented.

2. Main results
The following results gives the refinement of the Hadamard inequality for Caputo fractional derivatives

stated in Theorem 2.

Theorem 7. Let ¢ : [xo,y0] — R be the positive function such that € C"[xo,yo] and 0 < xo < yo. If ¢\ is
strongly convex function with modulus C, then for Caputo fractional derivatives we have:
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W (To+v0\ . Clyo—x0)2[(B—n+2)+ (n— B
"’”(02 O>+ K- p D p 12

< =Bl 1 (0bw) o) + (-1 (L v (o)

2(yo — xo)"F
[ (x0) + 91" (yo)] C(n— B)(yo — x0)*
= 2 T -p+1)(n-p+2) (14)

with B > 0.

Proof. Since l[J(n) is strongly convex function with modulus C, for x,y € [xo, yo], we have

o (x;y) - w“”(x);w(”)(y) Sy (15)

Letx = xoz+ (1 — z)yp and y = yoz + (1 — z)xp, z € [0, 1]. Then we have

C
29i") (0790} <y (rgz-+ (1= 2hyo) + 9 oz + (1= 2)30) - (5 ) 1= 22R 0 -5 (16)

Multiplying (16) with z" =1 on both sides and making integration over [0, 1] we get

1 1
21/1(”) (xo ;y()) /0 2Pl < /0 1p(”)(xoz +(1 —z)yo)z”_ﬁ_ldz

1 C 1
(n) o n-p-14, = - 2 _ 2 n—p—1
+/O P (yoz + (1 —2)xp)z dz 5 (o — x0) /0 (1—-22)"z dz. (17)

By using change of variables and computing the last integral, from (17) we get

2 1 Yo B n—p—1 1 Yo o n—p—1
- 7181/,(") (xg —;]/0> < lp(”)(x) <]/0 x) dx + / ¢(")(y) (y X0 > dy

~ Yo — Xo/x Yo — Xo Yo — X0 Jxg Yo — Xo
~ Clyo —x0)*[(B—n+2) + (n—p)* (18)
2n—=B)(n—B+1)(n—B+2)

Further it takes the following form

yo (B0 < zr((y’z:iojf_)ﬂ (“089) o+ (0 (D5 y) ()|

_ Clyo—x0)’[(B—n+2) + (n— p)’] (19)
dn—B+1)(n—p+2) '

Since ¢ is strongly convex function with modulus C, for z € [0,1], then one has

! (zx0 + (1= 2)y0) + 9" (20 + (1 - 2)x0) < 9 (x0) + 9 (y0) —2C2(1 - 2) (o — x0)*.  (20)
Multiplying (20) with z"~#~1 on both sides and making integration over [0, 1] we get
1 1
/0 ™ (zx0 + (1 — 2)y0)2z" P dz —|—/O ™ (zyo + (1 — 2)x0)z" P dz
1 1 1
S/OI/J(”)(xo)z"_ﬁ_ldz + /0 ™ (yo)z" P 1dz — 2C(yo — x0)2/0 (1-2z)z" Pdz. (21)

By using change of variables and computing the last integral, from (21) we get
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1 Yo (n) ( yo —x )t’l—‘B—l 1 Yo (n) ( y — X0 )H—ﬁ—l
Yo —Xo /xo v ) Yo —Xo dx+ Yo — xO/xolp (y) Yo — Xo 4y
~ "0 9" (o) - 2C(yo — x0)?
- n—p m—B+1)(n—p+2)

Further, it takes the following form

T(n—p+1) [(cpp i (€ g (] < (0 + 9" (wo)] - Cln - B)(yo — x0)?
oy oy [ (D) o)+ (0 (D) )] < 2 (- D(n—p+2)
(22)

Inequalities (19) and (22) constituted the required inequality. [J

Remark 1. If C = 0in (14), then we will get the fractional Hadamard inequality stated in Theorem 2, otherwise
its refinement is obtained.

The upcoming result is the refinement of another version of the Hadamard inequality for Caputo
fractional derivatives stated in Theorem 4.

Theorem 8. Let ¢ : [xo, 0] — R be the positive function such that € C"[xo,yo] and 0 < xo < yo. If ") isa
strongly convex function with modulus C, then the undermentioned inequality for Caputo fractional derivatives holds:

n x+y C(y *x)
w)(020>+2m—ﬁﬁ5w{ﬁ+a

. 2P0 (n — B+ 1) KCD(ﬁW)+¢> (o) + (=1)" (CDfW)-l/J) (xo)}

2

(yo — x0)" P 2
P (x0) + ™ (yo)  C(n—pB)(b—a)*(n—p+3)
= 2  4n—-B+1)(n—-Bp+2) ’ (23)

with B > 0.

Proof. Let x = x05 + yo (22;2) and y = xo (22;2) + Y03, z € [0,1] in (15), then we have

29 (W) <y (XO; + Yo (Zzz)) + ) (Xo (222> +y0;) - %(}/0 —x0)*(1-2)%  (24)

Multiplying (24) with z"~#~1 on both sides and making integration over [0, 1] we get

(n) ((*o+¥o /1 n—p-1 / Lo (2 2-2\\ n—p-1
2y ( > ) Oz dzgotp x02+y0 5 z dz
1 7 _ L C 1 s
—l—/o P (xo <zz> +yo;) z" P 1dz—5(y0—x0)2/0 (1—2z)2%2" P14z, (25)

By using change of variables and computing the last integral, from (25) we get

gt (B < (2(3/0—x)>"_ﬁ_1<n> 2dx (2@—))5
n—,Bl/J 2 S/% Yo — Xo Y (x)yo—xo+/xo L

2dy C(yo — x0)*

w-x (1-p)n—pT (- p+2)

(26)

x ") (y)
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Further, it takes the following form

(n) (X0 + Yo Wﬁl””_5+q){cjﬁ ) - n(Cﬁ ) ]
) (2] < BB (D0 9) )+ (1" (D #) (0

C(yo — x0)*
2 —B+1)(n—p+2) (27)

Since (") is strongly convex function and z € [0, 1], we have the following inequality:

_ _ _ — )2
p() (Xog +Yo (222>) + ") (Xo (222) +y0§) < 9" (x0) + ™ (yo) — C=2 Z)z(yo x0) . (28)

Multiplying (28) with z"~#~1 on both sides and making integration over [0, 1] we get

1 1
) (2 272)) np1 (n) 2-z Z) jnp-1
/0 P (x02+y0( > ))z dz+/o P <x0< > )+y02>z dz
1 . 1 . Clyo — %)% [1 B
< (n) n—p—1 (n) n—p-14, o 0 _ n—B4,
7/0 PV (x0)z dz+/0 P\ (yo)z dz 7 /0(2 z)z" Pdz (29)

By using change of variables and computing the last integral, from (29) we get

2 Yo 200 —x)\" P} 2 w(n) 2(y —x0)\" P}
yo—xo/m?(}'b (x)< Yo — Xo ) dx+]/o—xo/xo v (y)< Yo — Xo > ay
P (x0) + 9 (yo)  Clyo — x0)*(n — B+3)
= - 2n— B+ )(n—B+2) (30)

Further, it takes the following form

(yo — x0)" P (
P (x0) + ™ (yo)  C(n—B)(yo— x0)*(n— p+3)
= 2  4n—-B+1)(n—Bp+2) 1)

From (27) and (31), (23) can be obtained. [

Remark 2. If C = 0in (23), then we will get the fractional Hadamard inequality stated in Theorem 4, otherwise
its refinement is obtained.
3. Error bounds of fractional Hadamard inequalities

In this section we give refinements of the error bounds of fractional Hadamard inequalities for Caputo

fractional derivatives:

Theorem 9. Let ¢ : [xq,yo] — R be the function such that € C"1[x, yo] and 0 < xo < yo. If |p("+1)| is a strongly
convex function on [xg, yo), then the undermentioned inequality for Caputo fractional derivatives holds:

P (x0) + ™M (yy)  T(n—p+1) p e
’ : 2 - - 2(yo — xo)”*ﬁ [(CDxarlP) (o) + (-1) (CDyOJlJ) (XO):|

il (1= ) [Vl + 0] - e s (1- 5. e

“2n—p+1) " 2n- n—p+2)(n—p+3)
with B > 0.
Proof. By applying Lemma 1 and the strong convexity of [+, we find
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(n) (1) —
‘w (x0) + 9™ (yo) _ T(n=p+1) [(CD%)(yo) <1>"<CDﬁxp><xo>H

2 2(yo — x0)" P Yo
< ]/O—X()/ ’ n B _ - ﬁ‘ ‘l[J (n+1) ZxO—i-(l—Z)]/()) dz
cwzn | \ )8 = 2P (gD ) + (1= DD )] = o1~ 2o — ) |

_xol 11/
< %20[ [a- z)”*ﬂ—z"*ﬁ) (=9 ()1 — 2) [+ () 21 ~ 2)lyo — 307
[ (- a-zyF) (z|¢<"+1><xo>|+<1—z>|¢<"+”<yo>—cZ<1—z>yo—xo|2)dz]. (33)

1/2

In the following we compute integrals appearing on the right side of inequality (33):

1/2

|7 (=2 =27 (= ()| + (1= 29 (o) | = 21— 2)lyo — x0f?) oz

_ |ll](n+1 xO |/ /2 1_Z)n B_ n— ﬁ+1) dz+|¢(n+1 yO |/< n B+1_ (1—2)2"7’8) dz
— C(yo — x0)? (/01/22(1 — )" Pz — /01/2 2" P (1 — z)dz)

n—p+1
~ W0l (s — gt ) P o)
1 (1/2)n—F+1 C(yo — x0)? (n—B+4)
X((n—ﬁ+2>_ n—ﬁ+1)_(n—ﬁ+2)(n—/3+3) [1‘ 22 } G4

/;2 (zn*ﬁ —(1- z)nfﬁ) <z|(p(n+1)(x0)| +(1- z)|1p("+1)(y0)| —Cz(1—z2)|yo — x0\2) dz

1 1
— |qp(n+1) n—p+1 _ _ \n—P (n+1) _ n—B _ _ \n—p+1
WD) [ (2 212 de g )| [0 22 - (12 ) e

1/2
— C(yo — x0)? </112(1 —2)z" Pz — /1122(1 - z)”ﬁ+1dz>
n—p+1
=" o)l (5~ g ) o)
1 (1/2)-F+1 Clyo — %) n—p+4
g <<n—ﬁ+1><n—ﬁ+2> BT ES ) " p+2)(n-p+3) [1‘ 21F+2 ] | %)

By putting the values from (34) and (35) in (33), we get (32). O

Remark 3. If C = 01in (32), we get the fractional Hadamard inequality which is stated in Theorem 3, otherwise
its refinement is obtained.

By using Lemma 2, we give the following error bounds of Caputo fractional derivative inequality (23).

Theorem 10. Let ¢ : [xq,yo] — R be the function such that € C"*[xq,yo] and 0 < xo < yo. If [p"+V|7 is
strongly convex function on [xg,yo| for ¢ > 1, then the undermentioned inequality for Caputo fractional derivatives
holds:

n—p-1r(n— )
# {(CD?XOWO) o) + (=17 (CDl(g’fowt)) ‘/’)(xo)] — i (%)

[((n B DI o)1+ (1= B 3+ (yo) 1 - Sl f b )T

RN

Yo—X 1
< 2 (o)

+ ((ﬂ = B+3) " (x0) |7+ (B + V)" (o) |7

Clyo —x0)*(n—p+1)(n—p+4) i
2(n—p+3) ) ] (36)
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Proof. By applying Lemma 2 using power mean inequality, we have

2P (n—B+1) [,c-p n/CmB (n) { X0+ Yo
B D0,y 900+ (1) Dl )| ) (2520
_ 1 2 _ 1 2

< Yo 7 X0 |:/0 1B ‘lp(nle) <X0; + 10 <ZZ>) dz +/0 Priant ’IP(nJrl) (x(] ( : Z) +]/0;>
_ 1 1-3 1 5 _

< Yo - X (/0 2"5d2> 1 {(/O S B ‘lp(nﬂ) <x0;+y0< . Z))

1 _ q
+ (/0 7P ‘lp(”H) (xo <2 7 Z) +yo;> >

Now, applying strong convexity of |¢("*1)|, we have

4

—x 1 Z?Z—ﬁ-‘rl 1 Zzn_ﬁ — Zn_ﬁ+1
< W=t (gl [ e g [ S
4n—p+1)r ° '

1
— 2 q 19,1n—B _ n—p+1
—7C(y04 x0) /o (22" B+1 —z”—ﬁ+2)dz>q + (|1p(”+1)(xo)|‘7/0 szzdz

1
1 ,n—p+1 C _ 2 1 q
+|¢(n+1)(]/0)|q/0 z 5 dz — (}/0 N xO) /0 (Zzn—ﬁ-i-l _ Z”—ﬁ+2)dz> ]

<=

Yo — Xo

1
_4(71—,3—0—1)% (2(”—5+1)(”—,3+2)>

C(yo—XO)Z(n—ﬁ+1)(n—ﬁ+4))‘l’
2(n—p+3)

[((n= B DIy )

(=B +3) 9" (o) |7 —

—x0)%(n — n— g
+ (1= B+ 3P (o) 1+ (n = p+ Dy g — om0 (=PI f“‘”)],

2(n—pB+3)
inequality (36) is obtained. [

Remark 4. If C = 0 in (36), then we will get inequality stated in Theorem 5, otherwise its refinement is
obtained.

Theorem 11. Let ¢ : [xo,yo] — R be a differentiable mapping on (xo,yo) with ¢ € C"xg,yo] and xo < yo. If
|p(1+1)19 s a strongly convex function on [xq,yo| for q > 1, then the undermentioned inequality for Caputo fractional
derivatives holds:

n—p—1 _
) €Dl D0 + (1) (D )|~ (220

(o —x0)" P : :
Yo — Xp 4 v (n41) L) _ZC(yo—xo)z>‘17
ST (np—ﬁp—i—l) [(W T (xo) [+ 379"V (o) )1 3
1 _ 2 1
+ (@It )+ e o)y - 2 =200 ) ] . @)

Proof. By applying Lemma 2 and with the help of modulus property, we get

2P 1T (n — B+ 1) [
(o — x0)" P

vo—xo [ (Y ap| 1) (2 (2-2)
< [/Oz ‘w R

("Dl #)(30) + <1>”<CDfxO;yo)w><xo>} — i) (ogyo) ]

o " 2—z z
dz+/0 z" ﬁ‘lp( +1) <2xo+2yo)

dz] :
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Now applying Holder's inequality, we get

2n=B-1T(y — B +1 ) .
1
q

(yo — x0)" P
lp(nJrl) (;xo + 10 (2 ; Z)) ‘ dZ)

< yo;xO (np—/lﬁp—i—l); l(/ol
dz)q.

T 2—z z
+(/0 LN—u lp(n-&-l)( 5 x0+2y0>

Using strong convexity of |p("t1)|7, we get

2" FIT(n— B+ 1) [,c 4B 1/CpB () X0+ Yo
e B DLy 0+ (1) (D, p)0)] =9 (220

_ 1 . ) )
< Yo . X0 (np_zgp—i_l)ﬁ’ [(|1p(”+1)(x0)|q/0 %dz+|lp(n+1)(]/0)|q/o (22 Z)dz
C _ 2 1 1 Ly
S [ ) (o |1 (557 o

1z C(yo — x0)? [1
Dol [ 3z - SOOI oz 2z )

=

1

1
_ Yo —Xo 4 v (141) (v V(g (1) vig . 2C(Yo — x0)*\ ¥
0 () (Gl + g - 2E 0

1

2
+ (3|¢(n+1)(x0)‘1 + |¢<n+1)(yo)|‘7 _ 2C(yo3x0)> q

B 1 ) ol
ctono (A ) (G o)+ st oy - 25000

1

1 _ 2\ g
+ (@1t o)+ Iyt o)y - 20200 T 8)

Here we have used the fact that (a1 + b1)7 > (a1)7+ (b1)7, where g > 1, a1, b; > 0. This completes the
proof. O

Remark 5. If C = 0 in (37), then we will get inequality stated in Theorem 6, otherwise its refinement is
obtained.

4. Concluding Remarks

This paper provides refinements of fractional versions of the Hadamard inequalities for Caputo fractional
derivatives using strongly convex functions. Also, refinements of error bounds of the Hadamard inequalities
are given by using well established identities. Further, the authors are working for refinements of other well
known fractional integral inequalities by employing strongly convexities of other kinds.
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