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1. Introduction

ractional integral operators play a vital role in the advancement of mathematical inequalities and many
F integral inequalities have been established in literature. In [1], Farid established the bounds of the
Riemann-Liouville fractional integral operators for convex function. For more information related to fractional
integral inequalities, the readers are referred to [2-10].

Definition 1. Let ¢ € Lq[a, b] with 0 < a < b. Then the left-sided and right-sided Riemann-Liouville fractional
integral operators of a function i of order ¢ > 0 are defined as follows:

) = 5oy [ W—2@dE w>a m
and . b
G0 = gy [ @0 9@, w<b, @

where I'(¢) is the Gamma function defined as I'(0') = [~ t7~le~!dt.
In [9], Mubeen et al. defined the following Riemann-Liouville k-fractional integral operators;

Definition 2. Let ¢ € Lj[a,b] with 0 < a < b. Then the left-sided and right-sided Riemann-Liouville
k-fractional integral operators of a function ¢ of order ¢, k > 0 are defined as follows;

Cap(u) = kl"kl((f) / (u=8)E1p(o)de, u>a (3)
and . ,
G = gy ) @ 0F @ us, @

where I'y(0) is the k-Gamma function defined as T (0') = [t le~ %dt.
In [11], generalized Riemann-Liouville fractional integral operators are given as follows;

Definition 3. Let ¢ € Lj[a,b] with 0 < a4 < b and ¢ be an increasing and positive function on (a,b]
having a continuous derivative ¢ on (4, b). Then the left-sided and right-sided generalized Riemann-Liouville
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fractional integral operators of a function ¢ with respect to another function ¢ on [a,b] of order ¢ > 0 are
defined as follows;

G 00) = 1 [ (00 — (@) @p(@)dE, > ®
and . ,
o $(0) = gy [, (90) =909 (©)p(@)dg, w<b. ©

In [7], Kwun et al. defined the generalized Riemann-Liouville k-fractional integral operators as follows;

Definition 4. Let ¢y € Li[a,b] with 0 < a < b and ¢ be an increasing and positive function on (a, b]
having a continuous derivative ¢’ on (a, b). Then the left-sided and right-sided generalized Riemann-Liouville
k-fractional integral operators of a function i with respect to another function ¢ on [a, b] of order ¢,k > 0 are
defined as follows:

k) = g o 000 ~ 0@ (e, > o)
and y : . .
G 00 = ey [ 0@ o) T @p@e, <, ®

For suitable settings of ¢ and k, some interesting consequences can be achieved which are given in
following remark;

Remark 1. 1. For k =1, (7) and (8) fractional integrals coincide with (5) and (6) fractional integrals.

2. By taking ¢ as identity function, (7) and (8) fractional integrals coincide with (1) and (2) fractional
integrals.

3. For k = 1, along with ¢ as identity function, (7) and (8) fractional integrals coincide with (3) and (4)
fractional integrals.

4. For ¢(u) = ’{1—;;, (7) and (8) produce conformable fractional integrals given in [12].

5. For k = 1, along with ¢(u) = %7’ p > 0, (7) and (8) produce Katugampola fractional integrals given in
(2].

6. For k =1, along with ¢(u) = “TT:,

7. For ¢p(u) = (u;ia)s, s > 0in (7) and ¢(u) = —
integrals.

8. For ¢(u) = (”_S“)S, s > 0in (7) and ¢(u) = — (b_su)s, s > 01in (8), along with k = 1, then conformable
fractional integrals are achieved given in [14] are achieved.

(7) and (8) produce conformable fractional integrals given in [13].
(b—u)®

s 7

s > 0in (8) then conformable (k,s)-fractional

Next, we give the definition of exponentially convex function.

Definition 5. [15,16] A function ¢ : [4,b] — R is said to be exponentially convex if for all x,y € [a,b] and
u € [0,1], the following inequality holds;

e (et (1-1)y) < et (x) 4 (1 — 1)) )

The concept of exponentially m-convex functions was introduced by Rashid et al. in [17]. It is defined as
follows;

Definition 6. A function ¢ : [a,b] — R is said to be exponentially m-convex, where m € (0,1], if for all
x,y € [a,b] and u € [0,1], the following inequality holds;

e¢(”x+m(1—u)y) S uelp(x) —+ m(l — u)e‘/)(y) (10)
Remark 2. For m = 1in (10), (9) is achieved.

The aim of this research is to establish the bounds of the fractional integral operators defined in Definition
4. To establish these bounds exponentially m-convexity has been utilized. The established results provide
all the possible outcomes of fractional integral operators given in remark (1). The breakup of this paper is:
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in Section 2, the first result provides the bounds of the generalized Riemann-Liouville k-fractional integral
operators defined in Equations (7) and (8) for exponentially m-convex functions. The last result of Section 2
provides the fractional Hadamard type inequality. Furthermore, special cases of established results are also
discussed. In Section 3, we give some applications of presented results.

2. Main result

First, we give the following bounds of the sum of the left-sided and right-sided fractional integral
operators.

Theorem 1. Let i, ¢ : [a,b] — R be two functions such that ¢ be differentiable and ¢ € Lia, b] with a < b. Also let
 be exponentially m-convex, and ¢ be strictly increasing on [a,b] with ¢' € Lq[a,b]. Then for u € [a,b] and o, T > k,
the following inequality holds;

( ( )gok (1) +Fk( )CTk oY )S (Qb(”)*qb(ﬂ))%*l |:(u_a) (me¢(%)¢(u)—€¢(u)¢(a))

W—a
~ (met () — @) [* 4)(5)%} L (¢ ;f(g))i‘l {(b —u) (X p(e) — me? (B p(u)
— (P — met(3)) /ubq;(g)dg} (11)
Proof. From exponentially m-convexity of 1, we have
O < Z%geww N m%ew(%). (12)

Under given assumptions for the function ¢: for o > k, the following inequality holds;
@@~ 9@)F < 9@ 9 ~9@)E, Eeloul and ue lab (13)
Multiplying (12) with (13) and integrating over [a, 1], we have
[ 9 - (@)1 @)e" g
< @O0 9O oo [t @i+ mer ) [ (¢~ ey 0]

u—a

By using (7), we get the following estimation;

ity v < $O BT ) (o (8)g(a) — #0g(@)) — (met ) — ) [* gy

u—a
(14)
Again, from exponentially m-convexity of ¢ we have
O < g%“ew) n mz%ﬁew(%), (15)
Now, for T > k, the following inequality holds;
¢ (@) —pu)F T <) (@) — )i, T ub] and uefab] (16)

Multiplying (15) with (16) and integrating over [u, b], we have

—d(u %71 u
[ 0@ - gttt @er g < @R Tovtn [ upg/@yag + mer ) [0 019/ @]




Open ]. Math. Sci. 2020, 4, 78-85 81

By using (8), we get the following estimation;

(r)ggh e < L0 f(:;))i_l {(b — ) (P0p(0) — me? () ) — (o) —met(2)) [ h ¢(§)d§] (17)

From (14) and (17) we achieve (11). O

Corollary 1. If we put ¢ = 7 in (11), then following inequality holds;

Gok e 4 goh V) < (k( )( )(15 2)5)_1 [(u—a) (me? () g(u) — ¥ @p(a)) — (me? () _e¢<a>)/u”¢(g)d4

4 “”lfli’: (;)"(’guj);)_l {@ ) (20 p(b) — me (R)p(a) — (40— mer(8)) [ b ¢<c>d§]. (18)

Corollary 2. Under the supposition of Theorem 1, let m = 1. Then the following inequality for exponentially convex
function holds:

K (Te(@)g5k ¥ ™ 4+ T(r)gTg ™))

_ (p(w) = g(@) T [(u —a) (¥ p(u) - Hp(a)) — (e et @) [* ¢(§)d§}

u-—a

L () —p(w) ! {(b —u) (D p(b) — eV Wp(u)) — (V) —e¥®) /%(g)d@]. (19)

b—u

Corollary 3. Suppose k = 1, then under under the supposition of Theorem 1, the following inequality for generalized
Riemann-Liouville fractional integral operators holds;

u) — a o—1 "
F(0)Z5 e +r<r>a,§,hfe¢<”> < W= — ) (me (R p(a) - ¥ p(a)

u—a
-1
- (melp(ﬁ) el/’(“) ] —9(u) {(b —u) (ew(b)¢(b) - melp(%)gb(u))
b—u
— (40— meb(5) } (20)
Corollary 4. Suppose ¢(u) = wu, then under the supposition of Theorem 1, the following inequality for

Riemann-Liouville k-fractional integral operators holds;
2% ()b T(EGEA ) < (= ) [0 et ()| (6= ) [ ¥ e8]

Corollary 5. Suppose ¢p(u) = u and k = 1, then under the supposition of Theorem 1, the following inequality for
Riemann-Liouville fractional integral operators holds;

) R R R B
We need following lemma in the proof of next result.

a+b-¢
Lemma 1. Let ¢ : [a,b] — R be an exponentially m-convex function. If e¥(€) = elp( g ) then for ¢ € [a,b] and
m € (0, 1], the following inequality holds;

H(13) < %(m +1)eb@, 1)

Proof. We have

g—a, . b=C
<§ab+bga)+m1 (W) 22)
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Since ¢ is exponentially m-convex, we have

stz (55) = Ler® () @

el#(ﬂzﬂ) <

a+b—¢

Using given condition @) = e¢( " ) in (23), the inequality (21) can be achieved. O

Theorem 2. Let ¢, ¢ : [a,b] C [0,00) — R, be two functions such that ¢ be differentiable and ¢ € Lq]a, b] with

a+b—¢
a < b. Also let 1 be exponentially m-convex, e¥(¢) = e‘/}( E ) and ¢ be strictly increasing on [a, b] with ¢' € Lq[a, b].
Then for ¢ € [a,b] and o,v,k > 0, the following inequalities hold;

Y _ gl — ¢(a))kt?
(mzjl)ewz) [@(maf%)) RGURLO)L ] <k (Tulo + K5 eV @ 4 Ty (1 + kg5t Eked®))

< (47(17) - ¢(ﬂ))((’;+i(§)(b) - ‘P(ﬂ))% {(b _ 11) (e¢(b)¢(b) . me‘p(%)(p(a)) N (elp(b) _ me(’)(%)) /ab(p(g)d(;‘:|

(24)
Proof. Multiplying both sides of (21) with (¢(¢) — ¢(a)) ¢’ (¢) and integrating over [a, b], we have
5 [ 9() o) Fo @z < Lom 1) [ (90) ~ pla)Fo @er Vg 25)
By using (8), we get
ZKO®) — @O 4 (15) <y o 1 ke, (26)

(c+k)(m+1)

Similarly, multiplying both sides of (21) with (¢(b) — ¢(Z)) ¢’ (¢) and integrating over [a, b], one can get
the following inequality:

2k(p(b) — p(a)FT yape .
CETICEEY e (3°) < KTk(T+ k)G, ey (®), 27)

On the other hand from exponentially m-convexity of ¢, we have

) < %eww + m’;;‘fesv(%), 28)

Under given assumptions for the function ¢ for o, k > 0, the following inequality holds;

¢'(E)(P(&) — pla))k < ¢ (&) (P(b) —p(a))k, &€ [a,b]. (29)

Multiplying (28) with (29) and integrating over [a, b], we have

[ 0@ - planFer @er©ag < O v e aygr@yag +met) [0 @1e].

—a
By using (8), we get

krk(0+k)§‘7+kk @ < W [(b —a) (ew(b)gb(b) - melp(%>¢(a)) - (ew(b) — me?Gn ) f P dé‘] (30)
Now for ¢ € [a,b] and T,k > 0, the following inequality holds true;

() (@(0) —P(E))F < ¢/ (©)(p(b) — p(a))F.

=

CLy
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Multiplying (28) with (31) and integrating over [a, b], we have

[ 00 - o@nto@ervag < LOZLD oot e aygi@yag +mer () [0 19/ @10

By using (8), we get

=

KT (T + k) ihed ) < W[(b—a) (e¢<b>¢(b)—me¢(%)¢(a)> - (eW mefi’(i))/abq;(g)dg] (32)

By adding inequalities (30) and (32), second inequality (24) is achieved. [

Corollary 6. If we put o = T in (24), we get following inequalities;

HO0) —PEDET () < ry (o 4k (g0 11500 1 gD

(m+1)(7 +K) " e
< W {(b —a) (elp(h)(p(b) — metl’(%)cp(a)) — (elp(b) — meqj(%)) /ab 4’(5)‘14

Corollary 7. Suppose m = 1, then under the supposition of Theorem 2, the following inequalities for exponentially
convex function hold;

<k (rk(a+ R0 Kb @ Ty (x4 k) g e >)

pat

ket (441 [(qb(b) — g(a)) 1
oc+k ——

< () - (a)F + (p(b) — 9p(a)) [(b a) (e¢<h>¢(b) _ew<ﬂ>¢(a>) - (ewb) _ e¢(a>) /b(p(g)dg}

Corollary 8. Suppose k = 1, then under the supposition of Theorem 2, the following inequalities for generalized
Riemann-Liouville fractional integral operators hold;

2 (e [(9(0) - <>>U+l+<¢<b>—¢<a>>f+l}<WHWW@+F(T+1>§T+le¢>

(m+1) c+1 T+1 pat
< @O 6@ @) =0V [, ) (09(0) - me?Bg(a)) - (9 - met®)) [ ]
(b - 11) a
(33)
Corollary 9. Suppose ¢(u) = u, then under the supposition of Theorem 2, the following inequalities for
Riemann-Liouville k-fractional integral operators hold;
2k wvy [(0—a)Ett (b—a)Ft!
w(5h) ok ip(a) THkK (D)
TES e 1 k(rk(a+k)g RACIES WS SYa )
_ 41 _ 41
< (b-a)¥ —; (b-a)r [e‘“m + me"’(m] (34)

Corollary 10. Suppose ¢(u) = u and k = 1, then under the supposition of Theorem 2, the following inequalities for
Riemann-Liouville fractional integral operators hold;

2 e‘/’ a-ﬁ—h (b — ﬂ)0+1 + (b _Q)T
(m+1) c+1 T+1

(b — )7+ ; (b—a)T+! [e‘/’“’) N meu,(;;)] (35)

+1
} <T(e+1)g0 e @ +T(r +1)g7 e ®)

<

3. Applications

In this section, we give the applications of the results proved in previous section.
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Theorem 3. Under the assumptions of Theorem 1, we have

—¢(a I b
ke (ruolggh e + ryriggs o) < LOZIOE o) (met(Rgr) - rg(m)

b—a
— (mel/’(%) — ew(”)) /ab 4)(@){1@] + (9(b) ;(P(;));l {(b —a) (ew(b)<p(b) — metl’(v%)cp(a))
— (P — et (3)) /ﬂbqy(g)dé‘} (36)

Proof. If we put u = ain (11), we get

— o(a)) il )
(g e < PO 0@) [aa_a) (P09(6) — met(2)g(a)) — (¥ — met

S
S—
~
—
S
<
—~
AR
Nl
QU
™R
| I
—~~
w
N
p—

If we put u = bin (11), we get

K)o < (4,@);(_1,?)[;_1 [(b—a) (me? (W g(b) = e g(a)) - (me? () — evt@)) [ b¢<c>d§]. (38)

By adding inequalities (37) and (38), inequality (36) can be achieved. [

Corollary 11. If we put o = T in (36), then the following inequality holds;

1 b

T (ewa»q,(b) - mew%)(p(a))) — ((mevG) —ev@) 4 (o4 —mev(R))) [ b¢<c>da} (39)

a

Corollary 12. Ifwe put 0 =k =m = 1and ¢p(u) = u in (39), then the following inequality holds;

b fa) 4 of (D)
1 / e i_ (40)

OgE <
b—a a6 < 2
Remark 3. Similar relation can be achieved by applying Theorem 2, so we leave it for readers.
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