بررسی تاثیر نانو لوله های کربنی ﺑﺮ خواص مکانیکی کامپوزیت های زمینه پلیمری

نوع مقاله : علمی ترویجی

نویسندگان

1 دانشجوی دکتری

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران

چکیده

در تحقیق حاضر، تاثیر افزودن نانولوله های کربنى بر رفتار کششى و خمشى کامپوزیت های زمینه اپوکسى تقویت شده با الیاف بازالت بررسى شد. در گام نخست و به منظور برهم کنش مطلوب تر نانولوله ها با زمینه اپوکسى، اصلاح سطحى آنها صورت گرفت. نانولوله های کربنى اصلاح سطحی شده در درصدهای وزنى مختلف نسبت به زمینه (1/0% ، 3/0% و 5/0%) انجام و در ادامه مخلوط های حاصله به عنوان زمینه در ساخت کامپوزیت های تقویت شده با الیاف بازالت استفاده شد. به منظور بررسى اثر افزودن نانولوله های کربنى بر رفتار مکانیکی کامپوزیت ها آزمونهای کشش و خمش سه نقطه ای روی آنها صورت پذیرفت. ﻧﺘﺎﻳﺞ ﺣﺎﺻﻠﻪ نشان می دهد که اولا ﺑﻴﺸﺘﺮﻳﻦ ﻣﻴﺰان اﺛﺮﺑﺨﺸﻰ ﻧﺎﻧﻮﻟﻮﻟﻪﻫﺎی ﻛﺮﺑﻨﻰ اﺻﻼح ﺳﻄﺤﻰﺷﺪه ﺑﺮ اﺳﺘﺤﻜﺎم ﻛﺸﺸﻰ و ﺧﻤﺸﻰ در ﻛﺎﻣﭙﻮزﻳﺖﻫﺎی ﺣﺎوی 3/0 درﺻﺪ وزﻧﻰ ﻧﺎﻧﻮﻟﻮﻟﻪ ﻛﺮﺑﻨﻰ ﺣﺎﺻﻞ ﺷﺪه است. ثانیا ﺗﺄﺛﻴﺮ ﻣﺜﺒﺖ ﻧﺎﻧﻮﻟﻮﻟﻪ ﻫﺎی ﻛﺮﺑﻨﻰ در ﻳﻚ ﻣﻘﺪار ﻣﺸﺨﺺ ﺑﺮ اﺳﺘﺤﻜﺎم ﺧﻤﺸﻰ ﺑﻴﺸﺘﺮ از ﺗﺄﺛﻴﺮ ﻫﻤﺎن ﻣﻴﺰان ﻧﺎﻧﻮﻟﻮﻟﻪ ﻛﺮﺑﻨﻰ ﺑﺮ ﺑﻬﺒﻮد اﺳﺘﺤﻜﺎم ﻛﺸﺸﻰ ﺑﻮد. ثالثا روﻧﺪ ﺗﻐﻴﻴﺮات اﻧﺮژی ﺷﻜﺴﺖ ﺑﺎ اﻓﺰاﻳﺶ ﻣﻘﺪار ﻧﺎﻧﻮﻟﻮﻟﻪ ﻛﺮﺑﻨﻰ اﻓﺰودهﺷﺪه ﻣﺸﺎﺑﻪ اﺳﺘﺤﻜﺎم ﻛﺸﺸﻰ و ﺧﻤﺸﻰ ﻧﻤﻮﻧﻪ ﻫﺎ ﺑﻮد، ﺑﻴﺸﺘﺮﻳﻦ ﻣﻴﺰان ﺟﺬب اﻧﺮژی در ارﺗﺒﺎط ﺑﺎ ﻧﻤﻮﻧﻪ ﺣﺎوی 3/0 درﺻﺪ وزﻧﻰ ﻧﺎﻧﻮﻟﻮﻟﻪ ﻛﺮﺑﻨﻰ ﺑﺎ ﺑﻬﺒﻮد  35% ﻧﺴﺒﺖ ﺑﻪ ﻧﻤﻮﻧﻪ ﺷﺎﻫﺪ ﺣﺎﺻﻞ ﺷﺪ.

کلیدواژه‌ها

موضوعات


[1] Khosravi, H. and Eslami-Farsani, R, On the mechanical characterizations of unidirectional basalt fiber/epoxy laminated composites with 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes-enhanced matrix, J. Reinf. Plast. Compos., vol. 35, no. 5, doi: 10.1177/0731684415619493, ) 2016).
 
[2] Khosravi, H and  Eslami-Farsani, R ,An experimental investigation into the effect of surface-modified silica nanoparticles on the mechanical behavior of E-glass/epoxy grid composite panels under transverse loading, J. Sci. Technol. Compos., vol. 3, no. 1, pp. 11–20, )2016(.
 
[3] Domun ,N, Ballistic impact behaviour of glass fibre reinforced polymer composite with 1D/2D nanomodified epoxy matrices, Compos. Part B Eng., vol. 167, pp. 497–506 ,) 2019(.
 
[4] Alikhani ,A and Basaeri, A,The effect of pre-strain and number of SMA wires on the compression properties of glass-epoxy conical grid composites, Compos. Struct., vol. 262, p. 113624, Apr., doi: 10.1016/J.COMPSTRUCT.2021.113624.) 2021).
 
[5] Thakur, V. K and Thakur, M. K, Eco-friendly Polymer Nanocomposites : Chemistry and Applications, Adv. Struct. Mater., vol. 74, )2015(.
 
[6] Handbook of Composites, )1998(.
 
[7] Gao, Y ,Toughening and self-healing fiber-reinforced polymer composites using carbon nanotube modified poly (ethylene-co-methacrylic acid) sandwich membrane, Compos. Part A Appl. Sci. Manuf., vol. 124, p. 105510, Sep., doi :10.1016/J.COMPOSITESA.2019.105510. 2019(
[8] Shokrieh, M. M. Saeedi, A,  and Chitsazzadeh ,M,  Evaluating the effects of multi-walled carbon nanotubes on the mechanical properties of chopped strand matو polyester composites, Mater. Des., vol. 56, pp. 274–279 ,) 2014(.
 
[9] Setoodeh, A. Sokhandani, N, and Zebarjad, S. M, Theoretical and experimental study on the effect of multi-walled carbon nanotubes on improving the tensile properties and toughness of Vinyl ester resin, J. Sci. Technol. Compos., vol. 5, no. 4, pp. 539–550 , )2019(.
 [10] Aghamohammadi ,H. Eslami-Farsani, R and Tcharkhtchi, A, The effect of multi-walled carbon nanotubes on the mechanical behavior of basalt fibers metal laminates: An experimental study, vol. 98, p. 102538, Apr. doi: 10.1016/J.IJADHADH.2019.102538, ) 2020(.
 
[11] Q. Zhu. C. Zhang, J. L. Curiel-Sosa, T. Quoc Bui, and X. Xu, Finite element simulation of damage in fiber metal laminates under high velocity impact by projectiles with different shapes, Compos. Struct., vol.214, pp.73–82,doi: https://doi.org/10.1016/j.compstruct.2019.02.009,)2019(.
 
[12] Avilés, F. Cauich-Rodríguez ,J. V, Rodríguez-González, J. A.and May-Pat ,A., Oxidation and silanization of MWCNTs for MWCNT/vinyl ester composites., Express Polym. Lett., vol. 5, no. 9, ) 2011(.
 
[13] Zainuddin ,S. Optimization of mechanical and thermo-mechanical properties of epoxy and E-glass/epoxy composites using NH2-MWCNTs, acetone solvent and combined dispersion methods, Compos. Struct., vol. 110, pp. 39–50 ,) 2014(.
 
[14] Ahmadi, H. G, Liaghat, and Charandabi, S. C, High velocity impact on composite sandwich panels with nano-reinforced syntactic foam core, Thin-Walled Struct., vol. 148, p. 106599, )2020(.
 
[15] Wan Dalina, W. A. D, Mariatti ,M, Ramlee, R, Ishak ,Z. A. M, and Mohamed, A. R, Comparison on the Properties of Glass Fiber/MWCNT/Epoxy and Carbon Fiber/MWCNT/Epoxy Composites, in Advanced Materials Research, , vol.58, pp. 32–39,  )2014(.
 
[16] Zhang, J, Ju, S . Jiang ,D, and Peng ,H.-X, Reducing dispersity of mechanical properties of carbon fiber/epoxy composites by introducing multi-walled carbon nanotubes, Compos. Part B Eng., vol. 54, pp. 371–376 ,) 2013(.
 
[17] Sharma ,A. P and S. H. Khan, Influence of metal layer distribution on the projectiles impact response of glass fiber reinforced aluminum laminates, Polym. Test., vol. 70, pp. 320–347 ,) 2018(.
 
[18] Stan ,F, Sandu, L. I, and Fetecau ,C, Effect of processing parameters and strain rate on mechanical properties of carbon nanotube–filled polypropylene nanocomposites, Compos. Part B Eng., vol. 59, pp. 109–122, )2014(.
 
[19] Kim ,M.-T and Rhee ,K.-Y, Flexural behavior of carbon nanotube-modified epoxy/basalt composites, Carbon Lett. (Carbon Lett.), vol. 12, no. 3, pp. 177–179, )2011(.
[20] Amjadi ,S. Emaminia ,S, Heyat Davudian S, Pourmohammad, S, Hamishehkar ,H, and Roufegarinejad, L, Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles, Carbohydr. Polym., vol. 216, pp. 376–384, Jul., doi: 10.1016/J.CARBPOL.2019.03.062, )2019(.
 
[21] Payandehpeyman ,J. Majzoobi ,G, and Bagheri ,R, Experimental, analytical and numerical investigation of polypropylene nanocomposites microhardness, J. Sci. Technol. Compos., vol. 3, no. 2, pp. 165–176 ,) 2016(.
 
[22] Li, X, Zhang. X, Guo, Y, Shim ,V. P. W, Yang J, and Chai ,G. B., Influence of fiber type on the impact response of titanium-based fiber-metal laminates, Int. J. Impact Eng., vol. 114, pp. 32–42, )2018(.
 
[23] Khosravi ,H. Eslami-Farsani ,R, and Ebrahimnezhad-Khaljiri ,H, An experimental study on mechanical properties of epoxy/basalt/carbon nanotube composites under tensile and flexural loadings, J. Sci. Teh. Compos., vol. 3, pp. 187–194,  )2016(.
 
 
 
 
[24] Subagia ,I. D. G. A. Tijing L. D, Kim Y, Kim ,C. S, Vista , P.IV ,F, and Shon ,H. K, Mechanical performance of multiscale basalt fiber–epoxy laminates containing tourmaline micro/nano particles, Compos. Part B Eng., vol. 58, pp. 611–617, )2014(.
 
[25] Esmaili, P. Azdast T. Doniavi ,A, Hasanzadeh, R, Mamaghani, S, and Eungkee Lee ,R, Experimental investigation of mechanical properties of injected polymeric nanocomposites containing multi-walled carbon nanotubes according to design of experiments, J. Sci. Technol. Compos., vol. 2, no. 3, pp. 67–74, )2015(.
 
[26] Khajeh Arzani H. Kabiri Ataabadi ,A. R, and Chaparian, Y, Investigation of Effect of Structural Parameters on High Velocity Impact Resistance of Fiber Metal Laminates, Modares Mech. Eng., vol. 19, no. 6, pp. 1529–1538 ,) 2019(.