Preparation of Nano Spherical α-Fe2O3 Supported on 12-Tungstosilicic Acid Using Two Different Methods: A Novel Catalyst

Document Type : Research Article

Authors

Department of Chemistry, Arak Branch, Islamic Azad University, Arak, I.R. IRAN

Abstract

In this research, spherical α-Fe2O3 nanoparticles (NPs) were supported on the surface of 12-tungstosilicic acid (12-TSA.7H2O) as a catalyst support, using two different Forced Hydrolysis and Reflux Condensation (FHRC) and Solid-State Dispersion (SSD) methods. α-Fe2O3 and 12-TSA.7H2O were synthesized due to previous reports. All products were characterized by using FT-IR, SEM, EDX, elemental map, XRD and BET surface area. The results indicated that the supported catalyst (α-Fe2O3/12-TSA.7H2O) successfully was prepared and no change was found on the chemical structures of 12-TSA.7H2O and α-Fe2O3. By using XRD analysis average sizes of spherical α-Fe2O3 NPs supported by SSD and FHRC methods were measured 50.5 and 70.82 nm, respectively. The catalyst presented in this study can be applied in the different areas such as nano photocatalytic reactions.

Keywords

Main Subjects


[1] George S. M., Introduction: Heterogeneous Catalysis, Chem. Rev. 95(3): 475-476 (1995).
[2] Xia Y., Xiong Y., Lim B., Skrabalak S. E., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?, Angew. Chem. Int. Ed., 48(1): 60-103 (2009).
[3] Jun Y. W., Choi J. S., Cheon J., Heterostructured Magnetic Nanoparticles: Their Versatility and High Performance Capabilities, Chem. Commun., 12: 1203-1214 (2007).
[4] Chen J., Xu L., Li W., Gou X., α-Fe2O3 Nanotubes in Gas Sensor and Lithium-ion Battery Applications, Adv. Mater., 17(5): 582-586 (2005).
[5] Raming T. P., Winnubst A. J. A., Van Kats C. M., Philipse A. P., The Synthesis and Magnetic Properties of Nanosized Hematite (α-Fe2O3) Particles, J. Colloid Interface Sci., 249(2): 346-350 (2002).
[6] Walter D., Characterization of Synthetic Hydrous Hematite Pigments, Thermochim. Acta., 445(2): 195-199 (2006).
[7] Shekhah O., Ranke W., Schüle A., Kolios G., Schlögl R., Styrene Synthesis: High Conversion over Unpromoted Iron Oxide Catalysts Under Practical Working Conditions, Angew. Chem. Int. Ed., 42(46): 5760-5763 (2003).
[8] Mishra M., Chun D. M., α-Fe2O3 as a Photocatalytic Material: A Review, Appl. Catal. A., 498: 126-141 (2015).
[9] Farahmandjou M., Soflaee F., Synthesis and Characterization of α-Fe2O3 Nanoparticles by Simple Co-Precipitation Method, Phys. Chem. Res., 3(3): 191-196 (2015).
[12] Jiang T., Poyraz A. S., Iyer A., Zhang Y., Luo Z., Zhong W., Miao R., El-Sawy A. M., Guild C. J., Sun Y., Kriz D. A., Suib S. L., Synthesis of Mesoporous Iron Oxides by an Inverse Micelle Method and Their Application in the Degradation of Orange II Under Visible Light at Neutral pH, J. Phys. Chem. C., 119(19): 10454-10468 (2015).
[13] Askarinejad A., Bagherzadeh M., Morsali A., Sonochemical Fabrication and Catalytic Properties of α-Fe2O3 Nanoparticles, J. Exp. Nanosci., 6(3): 217-225 (2011).
[14] Tadic M., Panjan M., Damnjanovic V., Milosevic I., Magnetic Properties of Hematite (α-Fe2O3) Nanoparticles Prepared by Hydrothermal Synthesis Method, Appl. Surf. Sci., 320: 183-187 (2014).
[15] Bharathi S., Nataraj D., Mangalaraj D., Masuda Y., Senthil K., Yong K., Highly Mesoporous α-Fe2O3 Nanostructures: Preparation, Characterization and Improved Photocatalytic Performance Towards Rhodamine B (RhB), J. Phys. D: Appl. Phys., 43: 1-9 (2010).
[16] Nikazar M., Gholivand K., Mahanpoor K., Photocatalytic Degradation of Azo Dye Acid Red 114 in Water with TiO2 Supported on Clinoptililite as a Catalyst, Desalination., 219(1-3): 293-300 (2008).
[17] Dehno Khalaji A., Solid State Process for Preparation of Nickel Oxide Nanoparticles: Characterization and Optical Study, Iran. J. Chem. Chem. Eng. (IJCCE), 35(3): 17-20 (2016).
[18] Hill C. L., Polyoxometalates, Chem. Rev., 98(1): 1-387 (1998).
[19] Pope M. T., "Heteropoly and Isopoly Oxometalates", Springer-Verlag Berlin Heidelberg, Berline (1983).
[20] Kozhevnikov I. V., Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions, Chem. Rev., 98(1): 171-198 (2012).
[21] Zhong J. B., Photocatalytic Decolorization of Methyl Orange Solution with Phosphotungstic Acid, Iran. J. Chem. Chem. Eng. (IJCCE), 32(1): 57-65 (2013).
[23] Wang L., Zhou B., Liu J., Anticancer Polyoxometalates, Prog. Chem., 25(7): 1131-1141 (2013).
[24] Judd D. A., Netlles H. J., Nevis N., Snyder J. P., Liotta D. C., Tang J., Ermolieff J. J., Schinazi F. R., Hill C. L., Polyoxometalate HIV-1 Protease Inhibitors. A New Mode of Proteas Inhibition, J. Am. Chem. Soc., 123(5): 886-897 (2001).
[25] Wang X., Liu J., Li J., Liu J., Synthesis, Characterization and in Vitro Antitumor Activity of Diorganometallo Complexes γ-Keggin Anions, Inorg. Chem. Commun., 4(7): 372-374 (2001).
[26] Lin Z., Zhongqun L., Wenjun C., Shaojin C., Removing Cs from Nuclear Waste Liquid by Crown Ether and Heteropoly Acid: Simulated Tests, J. Radioanal. Nucl. Chem., 205(1): 49-56 (1996).
[27] Heylen S., Smeekens S., Kirschhock C. E. A., Parac-Vogt T. N., Martens J. A., Temperature Swing Adsorption of NOx over Keggin Type Heteropolyacids, Energy Environ. Sci., 3(7): 910-916 (2010).
[28] Lihua B., Qizhuang H., Qiong J., Enbo W., Synthesis, Properties and Crystal Structure of (Gly)2H4SiW12O40.5.5H2O, J. Mol. Struct., 597(1-3): 83-91 (2001).
[29] Soled S., Miseo S., McVicker G., Gates W. E., Gutierrez A., Paes J., Preparation and Catalytic Properties of Supported Heteropolyacid Salts, The Chemical Engineering Journal and the Biochemical Engineering Journal., 64(2): 247-254 (1996).
[30] Abolghasemi M. M., Hassani S., Rafiee E., Yousefi V., Nanoscale-Supported Heteropoly Acid as a New Fiber Coating for Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry, J. Chromatogr. A., 1381: 48-53 (2015).
[31] Chen F., Ma J., Dong Z., Liu R., Characterization and Catalytic Performance of Heteropoly Acid H4SiW12O40 Supported on Nanoporous Materials, J. Nanosci. Nanotechnol., 14(9): 7293-7299 (2014).
[33] Taylor D. B., McMonagle J. B., Moffat J. B., Cation Effects on the Surface and Bulk Structure of the Salts of 12-Tungstosilicic Acid, J. Colloid Interface Sci., 108(1): 278-284 (1985).
[35] North E. O., Bailar J. C., Jonelis F. G., Silicotungstic Acid, Inorg. Synth., 1: 129-132 (2007).
[36] Bamoharram F. F., Vibrational Spectra Study of the Interactions Between Keggin Heteropolyanions and Amino Acids, Molecules., 14(9): 3214-3221 (2009).