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Abstract

During robotic welding, several streams of 
heterogeneous data can be collected. To gain a systemic 
understanding of the welding process, these data 
streams have to be combined precisely and accurately, 
especially if our goal is to develop online weld quality 
assessments. Establishing correspondence among 
temporal and spatially based data is a nontrivial effort. 
This article presents a data collection system using a 
novel methodology for establishing correspondence 
across multiple data sources of robotic gas metal 
arc welding for objective quality assessment. First, 
correspondence between the weld process data and 
the resulting weld required time synchronization 
and spatial alignment. Second, an objective weld 
quality extraction technique that assigns quantitative 
measures at a resolution of 1 mm of linear weld travel 
was developed to evaluate weld quality. Specifically, 
in addition to developing a method for objective weld 
profile assessment, we developed an objective analysis 
of radiographic data for the occurrence of subsurface 
porosity to assess defects and demonstrate how to 
objectively quantify the occurrence of surface porosity. 
While some aspects of this paper have been addressed 
individually and separately by other research, this paper 
presents an integrated approach to these operations for 
a wide variety of weld data types and develops objective 
weld quality metrics that can be used for machine 
learning of weld quality for robotic welding.
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Introduction
Data driven approaches to complex system understanding 

continue to demonstrate significant advances across a broad 
range of engineering applications. Because of the complexity of 
welding processes, the welding industry can benefit from these 
advancements and the development of future intelligent welding 
systems that control complex welding procedures to improve 
quality and reduce rejection rates.

Welding is essential in many important applications. From 
rockets and space travel to specialized instruments in medical 
applications, welding is a critical step in the manufacturing pro-
cess and has been important to economic growth worldwide. By 
developing smarter robot welding units, more-intelligent process 
control, and automated quantitative quality inspections within 
the welding industry, significant productive improvements will 
be made in the future.

As sensor technologies improve and computational power 
increases, we want the welding robot system to become more 
intelligent. With the integration of machine learning tools, the goal 
is for the robot to become capable of recognizing abnormalities 
in the weld, identify the cause, and make immediate necessary 
corrective actions, leading to quality improvement without human 
intervention.
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Background: Gas Metal Arc Welding (GMAW) 
as a System

The welding process can be thought of as a sequence of three 
steps or stages. During each stage, different variables are control-
lable or observable. In the first stage, called the setup (or preweld) 
stage, parameter setting and system setup, like torch trajectory 
planning, contact-tip-to-work distance, gas composition and 
flow rate, wire size, and composition, are established. During the 
second stage, called the execution (or during welding) stage, the 
physical welding process is conducted and variables including 
arc current, arc voltage, travel speed, torch angle, cooling rate, 
heat and mass transfer, and other physical process variables are 
in play. The third stage, called the output (or postweld) stage, 
is characterized by the resulting physical weld and the corre-
sponding characteristics, such as weld geometry, penetration, 
microstructure, mechanical properties, possible defects, and other 
resulting physical characteristics of the welding process. While 
most of the input variables are preset by a welding procedure, the 
execution variables vary depending on the physical realization of 
the process and the disturbances present and produce a weld 
with output characteristics that vary based on that manifestation. 
Given the temporal and spatial complexity of this multistage pro-
cess, the requirements and challenges faced by a measurement 
system composed of several sensor technologies that must be 
synchronized to gather the process information from a subset 
of all the variables over all these stages are significant. In this 
work, while not all possible process information is included, we 
do include variable measurements from each stage of monitoring 
(setup, execution, and output) and show how to ensure that all 
the measurements are kept synchronized, irrespective of the 
signal type and source.

Online Weld Quality Prediction and Diagnosis

Each sensor technology carries with it advantages, chal-
lenges, and its applicability during or after the welding process. 
For example, inspection sensor technologies like radiography 
and ultrasonic sensing can provide subsurface information (e.g., 
porosity or slag) about the quality of the weld, while laser profiling 
and high-fidelity cameras can provide surface information about 
the quality of the weld (acceptable weld bead geometry), but they 
have corresponding issues regarding speed, time of evaluation 
(delayed evaluation or performed postprocess), cost, robustness, 
and accessibility, potentially limiting their usefulness for online 
quality assessment and diagnosis.

For a more flexible and accessible online solution, through-
the-arc sensing is attractive since no additional hardware is 
required. This involves sensing the arc voltage and arc current 
that are in-process, real-time measurable, and fundamental com-
ponents of the welding process. This makes them good quantities 
for obtaining patterns for diagnosing the process in real time and 
the occurrence of faults. Other real-time sensing capabilities can 
be added to measure quantities like temperature or acoustic sig-
nature of the process. However, these online sensing capabilities 
only directly measure the input and the intermediate variables of 
the process, which do not directly provide information about the 
quality of the weld. Thus, a form of mapping is always needed to 
determine weld quality.

To detect abnormalities and do diagnostics at the same time, 
one must fuse data from different sensor types, taking into con-
sideration time disparities and spatial information and leveraging 
information from postprocess sensor technologies to develop 
an online in-process model for predicting weld quality and diag-
nosing the occurrence of faults in the process and defects in the 
welds. To achieve these goals, two tasks are required. The first 
task requires synchronization of a heterogeneous set of data from 
multiple sources, which will include but is not necessarily limited 
to voltage and current data from real-time sensors, weld quality 
information from the resulting weld bead profile and visual images, 
and postprocess x-ray radiographs. An appropriate implementa-
tion will involve both time synchronization and spatial alignment 
to synchronize both in-process and postprocess weld data. The 
second task requires an objective weld evaluation methodology to 
extract the weld quality information from the inspection sensors 
to supervise the mining of the data from the in-process sensors.

Details of these tasks are presented in this paper using the 
approach of a holistic measurement system. In the related work 
section, we review efforts to detect and document defects in gas 
metal arc welding (GMAW) processes. In the experimental proce-
dures section, we describe in detail the system and methods used 
to collect weld data. In the data synchronization section, we show 
how data from a variety of heterogeneous sensors are synchro-
nized, including images, robot pose information, and postweld 
radiographs. In the data analysis section, we discuss our technique 
for registering, analyzing, and quantifying the results from the 
x-ray radiographs. This allows us to resolve the occurrence and 
behavior of subsurface and surface defects at a resolution of 1 mm. 
In the discussion section, the benefits of this systemic approach 
to the data collection process are identified. Finally, conclusions 
are presented in the conclusion.

Related Work

Efforts to develop sensing systems to detect and correct defects 
in GMAW systems have been ongoing for more than 30 years. 
Sicard and Levine (Ref. 1) developed an overview of the system 
requirements for an intelligent adaptive robotic control system 
for GMAW and gas tungsten arc welding (GTAW) and discussed 
the visual imaging and thermal sensing requirements necessary 
to provide the needed information for the controller. Smartt et 
al. (Ref. 2) developed a monitoring system using dual cameras 
to measure the area to be filled and the temperature gradient in 
the solidified weld metal of a GMAW process. Using fuzzy logic, 
these data were used to determine the needed heat and mass 
input and appropriate cooling rate for the process.

A neural network mapped the requirements to welding param-
eters and travel speed. Quinn et al. (Ref. 3) developed a method of 
flaw detection for constant voltage GMAW using process voltage 
and current measurements. Algorithms were developed to assess 
weld quality, and another algorithm flagged the welds as matching 
previously identified good welds. Several defects were detected, 
including lack of shielding gas, oily parts, and melt-through, but 
the algorithm did not detect misalignment on 3-mm lap joints. 
On a production run, the algorithms were successful in identifying 
five out of six defects but missed small surface porosity (less than 
3 mm). In a book edited by Zhang (Ref. 4), a number of sensor 
technologies for real-time process monitoring are presented as 
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well as chapters on monitoring various processes. Optical, infra-
red, and ultrasonic sensors are discussed and shown to provide 
separate contributions to real-time process monitoring. Wu et al. 
(Ref. 5) conducted through-the-arc, real-time sensing of voltage 
and current of a robotic constant voltage GMAW process on flat 
plate closed butt joint welds. Openings were cut into the root and 
represented step disturbances; thus, the location of the defect 
was previously known, so no data synchronization was required, 
and detection was predefined. Correlation of several statistical 
measures (mean, standard deviation, coefficient of variation, 
and kurtosis) to the weld quality were developed using statisti-
cal process control and a process control chart was developed, 
demonstrating how statistical process control for weld quality 
could be developed.

Zhang and Chen (Ref. 6) did multisensor fusion of arc light 
spectrum, arc sound pressure, and voltage signals of autogenous 
pulsed GTA welds with artificially introduced defects on plate butt 
joint welds. Signals were synchronized by collecting all the data 
on the same data acquisition (DAQ) computer. They note the light 
spectrum data were down sampled before being integrated into 
the data set. Spatial alignment of the data is presented but the 
precision of that alignment is not given. Fisher distance criterion 
was used for feature detection and support vector machines using 
cross validation were used to detect defects, but there was not 
quantification of the defects. Fan et al. (Ref. 7) state that “preci-
sion measurement of the weld pool surface characteristics is a 
bottleneck for accurate control of weld penetration as well as for 
successful development of [a] next-generation intelligent welding 
system.” They provide an extensive history of vision research 

applied to weld pool monitoring and measurement. Yusof et al. 
(Ref. 8) collected acoustic signals obtained while GMAW on API 5L 
X70 gas pipeline steel and analyzed them using the  Hilbert-Huang 
Transform to obtain the energy-frequency-distance plots that 
demonstrated strong correlation to areas of surface and subsur-
face porosity. Huang et al. (Ref. 9) used a spectrometer to monitor 
the arc spectrum while GTAW of aluminum to detect porosity. They 
used local linear embedding and empirical mode decomposition to 
reduce the spectral data to a spectral band of interest. An extreme 
learning neural network was then trained to identify large pore, 
small pore, and porosity free weld areas. With this information 
available, a fuzzy proportional-integral-derivative controller was 
developed to adjust the current of the GTAW process to respond 
to variations in butt joint weld opening and groove angle and 
reduce the occurrence of porosity. Zhang et al. (Ref. 10) provide a 
state-of-the-art review of welding manufacturing, including both 
GMAW and GTAW and other processes. They present a systems 
level approach to welding manufacturing, including modeling 
and control, and discuss advances in sensors for these control 
systems. In a follow-on article, Zhang et al. (Ref. 11) explore the use 
of machine learning and especially deep learning as it has been 
applied to welding. Cheng et al. (Ref. 12) provide a comprehensive 
literature review and analyses of the state-of-the-art of real-time 
sensing of GMAW and the mathematics for real-time control. They 
also discuss weld seam tracking and through-the-arc sensing.

In addition, much work has been done to develop and improve 
seam tracking systems (Refs. 13–21), measure weld profiles (Refs. 
22–24), and, more recently, estimates of bead penetration (Ref. 
25). While all these efforts involve gathering of weld process 

Fig. 1 — System block diagram.
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data and collecting data from other components of the system, 
e.g., cameras, laser profilers, and robot controllers (robot pose 
information and torch travel speed), the degree to which these 
data are synchronized depends on the purpose of the work and 
the granularity of assessment desired. For example, if one simply 
wants to provide a good/bad weld assessment, identification of 
one qualifying defect is sufficient to classify the weld as bad, and no 
further information about weld process values or robot operational 
setting is needed. On the other hand, if we want to correlate the 
output characteristics at a particular location in the weld back to 
the weld process state at that point in time and place, then all the 
data that are relevant to the formation of the solidified weld at that 
specific location and time are needed to make a valid model and 
make an informed assessment. This necessarily implies that the 

data be synchronized both temporally and spatially. In the case of 
robotic welding applications, there is often a weave component 
included in the trajectory, and, perhaps, changes in torch and work 
angles. These must be accounted for if one is to fully represent 
the input data. So, except for specialized laboratory setups, the 
most reasonable approach for obtaining this information is from 
the robot motion controller. Thus, for more-detailed positional 
information about the electrode, especially when investigating 
different electrode orientations like work angles, travel angles, 
and motion patterns, it is better to use a robotic manipulator that 
is designed for this purpose. The challenge with industrial robotic 
controllers is that their positional information is not necessarily 
easily accessible. This challenge is often overlooked.

Fig. 2 — A multifaceted data acquisition system.

Fig. 3 — Data collection procedure.
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Purpose

The work presented here is an approach for developing a holistic 
systems-level methodology for dealing with heterogeneous data 
collection specifically for robotic GMAW that would be useful in 
other domains. Two specific challenges have been addressed that 
constitute the contributions of this work. The first challenge is 
the issue of temporal and corresponding spatial relationships for 
traditional robotic welding systems. Traditional robotic welding 
systems have separate proprietary controllers for the robot and 
for the welding unit. As we explain in the data synchronization 
section, the fusion of these data streams for external use is not 
directly available and requires the development of various software 
tools. The second specific challenge that must be faced is the 
correlation of time series data with the resulting weld bead profile 
(relevant to visual inspection), and, in our case, the correlation of 
x-ray radiographic images that are used to identify surface and 
subsurface defects, e.g., trapped slag, worm holes (trapped gas), 
and other irregularities (incomplete fusion). Thus, the approach 
presented in this paper integrates temporal and spatial data at a 
precision that allows for applying machine learning algorithms to 
investigate in-process predictors of weld quality at a multigran-
ular level and make correlations back in time to all relevant data 
contributing to the formation of the solidified weld at specific 
points in space while leveraging objectively labeled data from 
postprocess sources.

Experimental Procedures
To acquire the needed data, one needs an acquisition system 

and a collection procedure that is flexible enough to handle data 
collection in-process and postprocess, knowing that all the data 
cannot be gathered simultaneously.

System Description

Figure 1 describes the system block diagram of an augmented 
robotic welding system equipped with sensors that capture both 
in-process data (i.e., voltage, current, arc length, electrode pose, 
and weld pool images) and postprocess data (i.e., profile, visual, 
and x-ray images of the weld bead) and how they all fit into an 
offline learning system to produce a model that captures the 
dynamics of the physical welding process and controller for online 
weld defect detection and diagnosis.

A photograph of the actual system assembly is shown in Fig. 2 
alongside a diagram of the main subsystem devices. The system 
includes a Lincoln PowerWave® S500 with its built-in data acquisi-
tion system, an ABB IRB 1660ID robot, an AutoDrive® S wire feeder, 
a GS3-U3-23S6C Point Grey video camera, a SmartTrak® 50 mass 
flow controller, a National Instruments™ CompactRIO-9024 data 
acquisition system with its data acquisition modules, and a Key-
ence Model LJ-V7080 laser profiler. In the photograph in Fig. 
2, the laser profiler can be seen below the torch, and the video 
camera is mounted behind the torch head.

Data Collection Procedures

Given the flexibility of data collection needed, in Fig. 3, we pres-
ent a 4-stage sequential acquisition process with the following: 1) 
Setup stage that will be discussed later; 2) execution; 3) output/
in-situ; and 4) output/postweld. These stages account for all the 
different ways sensors are used to measure data about a weld. 
Thus, this procedure can be modified to include other sensors in 
each stage. To keep each stage synchronized with the next stage, 
a sync marker is embedded during each stage of data acquisition. 
This is a major element of any successful heterogeneous data 
collection.

Fig. 4 — Time synchronization.
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Setup/Preweld

During this stage of the process before welding, the tool center 
point (TCP) of the electrode on the welding torch is calibrated. 
Likewise, the TCP of the profiler camera is calibrated to have a 
reference point for overlaying postweld in-situ data measurements 
with the real-time online data acquisition. To ensure registration 
with radiographic images, the plates are physically marked with 
indents that are observable by the profiler camera and the x-ray 
machine.

Execution/During Welding

In-process (i.e., while welding), a synchronized measurement 
data collection of the voltage, current, arc length error, torch pose, 
and camera images are performed, synchronized in time by a 

systemwide timing signal of 1 kHz that is superimposed on each 
data stream source.

Output/In-Situ

After the weld is completed, any surface slag or spatter is 
removed from the weld bead. With the weldment still in position, 
the same path used during welding is retraced and weld-bead 
profile measurements are taken at 0.5-mm increments. At every 
measurement location, each profile captured is logged along with 
the full 6 deg-of-freedom pose of the robot.

Output/Postweld

In the final stage, the weldment is removed from the fixture 
and subsequently radiographed.

Fig. 5 — Synchronized in-process data with weld profile and weld visual photo.

Fig. 6 — Mapping x-ray image to the actual plate dimension.
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Results

Data Synchronization

In the previous section, we introduced the physical aspects (i.e., 
hardware, setup, and procedure) of creating the needed data. In 
this section, we discuss the internal workings of how synchroniza-
tion is achieved. While external sensors can be used for in-process 
data measurements, modern power supplies and robots already 
possess many of the process variables of interest. For example, 
using the pose as provided by the robot is more direct than using 
other means. The challenge becomes time-synchronizing the 
two subsystems to gather already provided data alongside other 
external sensors. The electrode position can then be used to pro-

vide spatial alignment of the post-process weld quality data with 
the in-process time synchronized data.

In-Process Data (Time Synchronization)

This involves the synchronization of data provided by the power 
supply (process data), the robot (positional information of the 
electrode), and camera images. Synchronizing these devices is not 
as straightforward as one may think; they all use separate com-
munication channels and are not generally built for this purpose. 
This is a challenge affecting the whole robotic welding industry. 
Hence, creativity and customization are required of these devices.

As seen in Fig. 4, the power supply and the robot controller send 
their data to a master acquisition device, a computer in this case, 
over separate channels, each with its own time stamp. This inher-
ently comes with the problem of misalignment in the individual 
timing signals. By creating a central timing signal composed of 
a 1-kHz pulse stream, the power supply is synced with the DAQ 
computer, a NI CompactRIO-9024, by sampling these timing-bits 
at 120 kHz and overlaying them with the rest of the data avail-
able within the power supply. As for the robot controller, there 
is an internal restriction on adding timing-bits to the pose data. 
Instead, an internal sync signal called the weave-sync is added 
to the robot pose data, which changes state at the beginning of 
every welding procedure-segment during a weld run (with the 
constraint that each weld run must contain some amount of weave 
motion of the welding torch). The DAQ computer is then used to 
capture this weave-sync signal while simultaneously logging its 
own timing signal, which is the central timing signal. To handle 
latency, dwell-bits — a digital signal from the robot controller 
that indicates when the electrode is in the side wall with less than 
1-ms latency — is also included. Adding these dwell-bits signals 
directly to the pose data would have been the easiest solution 
but is also not supported.

As shown in Fig. 4, we end up with three separate data streams 
coming into the computer, which are merged by upsampling to 

Fig. 7 — Spatial alignment of profile, radiographic, and visual images for a single weld run.

Fig. 8 — AWS D1.1 weld profile schedule.
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the same sampling frequency of 120 kHz. This includes Stream 1 
from the DAQ computer, consisting of weave-sync, dwell-bits, and 
central timing-bits; Stream 2 from the power supply, containing 
the central timing-bits with voltage, current, arc length error, 
and other internal data; and finally, Stream 3 with weave-sync 
and pose data from the robot controller.

To minimize any latency to within 1 ms between the data stream 
from the robot controller and the DAQ central-timing bits, we iso-
late the robot pose data corresponding to a weave motion region 
using the start dwell-bit, the end dwell-bit, and the weave-sync 
state. The weave-sync state indicates the weaving region in the 
data while the start and end dwell-bits act as reference points 
for when the electrode was first in and last out of the side walls of 
the work piece. By computing the phase-shift in the robot pose 
data in its weaving axis with its mirrored version within these 
reference points, we could then reduce the latency to the 1-ms 
target. The 1 ms is a good resolution of time since the robot is 
traveling at 7.62 mm/s.

In most welding research test-beds, simple specialized mech-
anized systems are often used, thus making it possible to acquire 
the position of the electrode in addition to the process data using 
a single data acquisition system. In other research, positional 
information is either not acquired (or only approximated) or not 
needed. In our work, positional information is crucial, but its acces-
sibility is limited by the available communication protocols and 
their associated latency. The time synchronization aspect of this 
approach is not new. However, by combining time synchronization 
with a latency reduction system allowed the gathering of a new 
set of weld data, synchronized precisely in ways people have not 
when approaching the problem of locating weld defects with high 
precision relative to the whole process data.

Figure 5 presents a 0.5-s snippet of the time synchronization 
output for a weld run. It contains the voltage, current, weld pro-
file scan, weld profile image, dwell-bits, and electrode position 
within the weaving-axis of the robot as a function of time and 
includes an image of the resulting weld. The electrode position, 

Fig. 9 — Normalizing the x-ray image pixel intensity and weld width.

Fig. 10 — A — Fitting a quadratic curve to normalized pixel intensities of good welds; B — the residuals of the model 
with the two-standard deviation margin.

A B
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depicted with the green marker, corresponds to the weld profile 
scan (third image, left column) at that location in time. The dwell-
bits are shown in the top two right side figures. The fillet weld was 
produced in the 2F position, i.e., one plate vertical and the other 
plate horizontal. The upper graph is for the vertical side and the 
second is for the bottom (flat) plate. The voltage and the current 
are the left side top two figures with the two red markers showing 
a window time of 66 msec that maps to the 0.5-mm weld profile 
scan interval when the electrode was at that location.

Postprocess Data (Spatial Alignment)

Since the positional information has been synchronized with the 
in-process data, all other data acquired postprocess can then be 
aligned provided they have the correct positional information. For 
the weld profile data, alignment is simple once the profile camera 
has been calibrated to have the same TCP as the electrode. Note 
that the positional repeatability of the ABB IRB 1660ID is 0.02 
mm. By retracing the same programmed path used while weld-
ing, the pose data is acquired together with each cross-sectional 
profile scan of the weld.

The radiographic image is processed indirectly. As was shown 
in Fig. 5, we embed markers on the weld plates that reflect in both 
the radiographic image and the profile scans. Thus, we can align 
the radiographic image with the rest of the data by registering it 
with the profile image because the profile scans contain the posi-
tional information. By using these common features/embedded 
markers in both the weld profile image and the radiographic image 
with the actual dimension of the welding plate, a homographic 
transform is computed to register the images together. The steps 
to complete this are as follows:

1. Create an orthophotograph of the input image; in this case, the 
x-ray image. This is the correction of the camera angle from some 
off-axis pose so that the image is presented as if it were taken from 
directly overhead (Ref. 26). Using the edges of the bottom plate 
as control points, we calculate the transform between the actual 
plate dimensions and the x-ray image. This transform is then used 
to create a scaled orthoradiographic image, as shown in Fig. 6.

2. Calculate the homography transform between the weld pro-
file image (in pixels) and the scaled orthoradiographic image 
above using the embedded markers/features common to both 
images. Using this transform, we can then map the positional 
information of the weld profile to the x-ray image.

3. Extract the weld region from the scaled orthoradiographic 
image with its corresponding positional information using active 
contour (Ref. 27). We can then evaluate this region for defects.

Using the same method, we can also add positional information 
to the weld photograph; that is, the visual image. An alignment 
of the weld profile image with the x-ray image and the weld pho-
tograph is shown in Fig. 7.

The surface appearance of the weld as well as evidence of the 
subsurface condition is shown. Additionally, the data necessary 
to determine the geometry of the weld bead is synchronized. With 
this alignment, we can provide an evaluation of the weld at any 
location desired, subject to the resolution of the profiler data, 
and match it to the corresponding process data. This provides 
significant benefits for the prediction of weld quality. However, 

Fig. 11 — Macroevaluation of some welds with porosity.

Fig. 12 — Finding outliers.
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these are just registered images. What is needed is actionable 
evaluation information for training learning systems. In the next 
section, we discuss an objective way to do this analysis using 
thresholds so that slices of the weld can be automatically labeled 
as defective or not.

Data Analysis

Quality assessment and acceptance labeling of the weld requires 
extraction of weld quality measures. While there are standards 
(e.g., AWS D1.1, Structural Welding — Steel) that specify threshold 

Fig. 13 — Subsurface evaluation of a radiographic image. Fig. 14 — Step-by-step images of the surface evaluation 
process.

Fig. 15 — A surface evaluation for weld surface porosity measured in pore diameter.
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criteria for weld quality, human inspectors interpret these stan-
dards, and as a result, there is some subjectivity involved and 
uniformity of assessment cannot be guaranteed. In this section, 
we present objective evaluation techniques that allow automatic 
identification of defects with the flexibility to define thresholds 
for what should be considered acceptable or not in accordance 
with the requirements of the standards or project specific require-
ments. For a fillet weld, for example, AWS D1.1 specifies that the 
sum of the visible piping porosity 1 mm or greater in diameter shall 
not exceed 10 mm in any linear 25.4 mm of weld and shall not 
exceed 20 mm in any linear 300 mm length of weld. In addition, 
a table similar to Fig. 8 specifies the maximum convexity and 
concavity allowed for a given weld face width (provided the leg 
lengths meet the specified nominal dimension).

All these quantitative measures can be extracted from the 
sensor data and be used in combination with the standards. In 
this section, we describe methods for extracting relative subsur-
face porosity volume from radiographic images, surface porosity 
diameter from weld profile images, and other weld geometry 
information, including leg length, weld face width, and convexity 
measurements, from the profile scans. Rather than determining 
if the weld is acceptable or not as a whole, as in the standards, 
we extract this information at a resolution of 1 mm to understand 
how the quality of the weld is varying along its path.

Fig. 16 — Graphical analysis of weld profile geometric properties.

Fig. 17 — Extraction of convexity, weld face width, and left 
and right leg lengths from the geometric evaluation of 
the line scans from each 1-mm weld slice.
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Subsurface Porosity Evaluation

Similar to certain aspects of other research (Refs. 28, 29), we 
perform background subtraction based on a model obtained from 
multiple normalized radiographic images of good welds. The idea 
is to capture a representative distribution (i.e., pixel intensities) 
of the surface of a good weld from one toe of the weld to the 
other and then find how the local distribution of other welds’ pixel 
intensities deviate from this standard distribution.

The surface of the weld bead from the radiographic image can 
be modeled as a quadratic surface — Fig. 9. In the previous section,  
we discussed how to extract the x-ray of the weld bead from the 
radiographic image. However, the global pixel intensities of these 
images differ from one another depending on operators. Also, 
the width of the weld is not always the same depending on the 
positioning of the x-ray source relative to the plate, and the actual 
width of the weld bead. To avoid the effect of these variations, we 
normalize the segmented weld bead x-ray image in pixel intensity 
and weld width, as shown in Fig. 9, so that when the surface of 
any weld is modeled, we obtain normalized pixel intensities rep-
resentative of the image densities of the weld bead from one weld 
to the other. In addition, the ends of the weld bead in the x-ray 
image are discarded to reduce the variability for these analyses.

To develop an exemplary distribution of the pixel intensities for 
good welds, normalized x-ray images of good welds are concate-
nated and fitted to a quadratic curve. From this quadratic curve, 
the residual, which is the deviation of each pixel intensity given 
its position across the normalized width of the weld from the 
quadratic curve, is computed. See Fig. 10 for an example of fitting 
five good welds. The variance, σ2, of these residuals approximates 

the exemplary distribution that is needed for the evaluation of 
other welds.

The evaluation process is as follows: The aim is to compute a 
dimensionless measure that represents the volume of the pores 
buried in the weld at different locations along the weld at a reso-
lution of 1 mm. Some macroevaluation examples of porous welds 
with their corresponding x-ray images are shown in Fig. 11. From 
these images, one can observe darker spots representing deeper 
voids along with some other not so dark but elongated areas along 
the weld. This means there is a relationship between the pixel 
intensity and the pore size and depth.

To capture this information in a form of pore volume at every 
slice of the weld, we apply the following algorithm:

1. Segment the weld region from the x-ray image and discard 
the ends of the weld.

2. Normalize the segmented weld region in pixel intensity and 
width.

3. Perform a local background subtraction (instead of a global 
one) to account for pixel intensity variation along the weld. That 
is, we fit a quadratic surface locally to an equivalent of 1-mm 
slices of the weld and then compute the residuals, ei = f(xi) – pi, 
for each slice — Fig. 12. To reduce sensitivity to outliers, a robust 
least-squares method, least-absolute residuals that minimizes 
the absolute differences of the residuals rather than the squared 
difference is used.

4. Compute outliers. These are pixel intensities that fall below 2σ 
of the residuals of the training welds. Those above this threshold 
are ignored since they are not representative of pores in the weld.

Fig. 18 — Sample #1: combined evaluation. Fig. 19 — Sample #2: combined evaluation.
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 Note that the lower the pixel intensity, the darker the region. 
Since the image segmentation is not always exact at the edges 
of the weld region, a weighing function in the form of a normal 
distribution with its mean centered around the center of the weld 
region is introduced. This weight, wi, takes into consideration the 
likelihood of a pixel being located within the weld bead and not 
just the plate.

5. Finally, compute the pore volume score, which is below,

where M is the number of pixels per width of the weld slice and 
N is the total number of pixels within the slice. The distance, di, 
captures the depth of the pores as indicated by the pixel intensity, 
while the number of outlier pixels (i.e., with nonzero di) represents 
the area of the pore.

The result of an evaluation computed using this method is shown 
in Fig. 13. It shows a normalized image at the bottom of the figure 
and the corresponding scores at each 1-mm interval.

Surface Porosity Evaluation

We acknowledge the work done by Servo-Robot (Ref. 30) in 
identifying surface porosity and weld profile evaluation, but their 
work is proprietary. Here we present a simple, easy, fast, yet robust 
way to detect and measure the diameter of surface porosity in 
a weld. Image binarization is always tricky when working with 
images from visual cameras due to variations in light intensity. 
Realizing that images created by a laser profile camera are not 
affected by external light intensity, one can perform simple image 
binarization after performing some local filtering of the image. 
Steps are provided below. The resulting image after each step is 
shown in Fig. 14.

1. Transform the profile scan into an image while retaining the 
scaling.

2. Filter the image by computing the local standard deviation 
at every pixel location.

3. Binarize the image using Otsu’s method (Ref. 31), which 
finds an intensity threshold that minimizes the intraclass variance 
between the two classes of white and black regions.

4. Finally, perform blob analysis on the image to extract the area 
of the white blobs. This is done by counting the number of pixels 
within that region. One can then compute the effective diameter 
in millimeters since the number of pixels per millimeter is known.

An evaluation result is shown in Fig. 15. It shows the computed 
diameter of each pore corresponding to its location along the 
weld. Note that the blob at the right of the weld is not really a 

surface pore but can be accounted for simply by only looking at 
blobs below the binarization threshold.

Geometric Evaluation

For a complete weld assessment, it is necessary to extract the 
geometric properties of the weld (e.g., width, length, and curva-
ture). As one can imagine, this is based on quantifying lines and 
curves as presented in these articles (Refs. 32, 33, 34, 35). One 
main challenge here is performing these operations in a robust 
manner, especially in differentiating between the base plate and 
the face of the weld bead. Once this is accomplished, identifying 
defects is reasonably straightforward.

We apply the K-means clustering algorithm (Ref. 36) and the 
least absolute residual algorithm (Ref. 37) for line and curve fitting 
for this evaluation. After averaging the scans within the weld slice 
of interest, an approximate segmentation of the base plates from 
the weld face is found, as shown in the second plot in Fig. 16. This 
is done by clustering based on the cross-sectional distance and 
the height of the profile scan. The intersection of the fitted lines 
to these segmented scan points representing the left and right 
plates becomes the root of the joint, an important feature for 
computing the leg lengths (see Fig. 8). We then extract the weld 
face by finding the points when the scan points just curve away 
from the fitted lines, as shown in plot 4 of Fig. 16. The curvature 
of the weld can then be computed by fitting a quadratic curve to 
the weld face. To determine the leg lengths, we find the largest 
right angle triangle inscribed in the weld slice, ignoring the pore. 
That is, we are only considering the effective curvature of the 
weld. For convex welds, these are the intersections of the weld 
face curve with the fitted lines representing the weld plates. In 
the case of a concave weld, as shown in plot 5 of Fig. 16, the curve 
is offset by the height of the convexity, where the convexity is the 
distance between the maximum point on the weld face curvature 
and the line joining the toes of the weld. The sides of this triangle 
are then measured to denote the left and right leg lengths while 
the length of the hypotenuse of the triangle denotes the weld 
face width. An example of geometric evaluation for a complete 
weld is shown in Fig. 17.

Synchronized Weld Data Examples

To show how well the above algorithms work, we have shown 
two examples of a combined evaluation for two different welds 
in Figs. 18 and 19. The two green start markers denote the start 
and end of the evaluation for subsurface porosity. The top graph 
shows the measured convexity at each millimeter along the weld. 
The second graph shows the computed face width at 1-mm incre-
ments. The third graph shows the left-side leg length in blue and 
the right-side leg length in red in millimeters. The fourth graph 
is the surface profile laser scan. The fifth graph is the plot of sur-
face pore diameter in millimeters in blue and the subsurface pore 
volume in red, again at 1-mm increments. The sixth graph is the 
x-ray of subsurface porosity. The seventh graph is a photo of the 
finished weld showing the profile and surface defects.

Both work pieces had been sprayed with a varying thickness of 
primer paint, and, as a result, both welds have significant amounts 
of subsurface porosity and several surface pores. Neither would 
be acceptable per D1.1. However, if one isolated their attention 

(2)

(1)
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to the last 50 mm of Fig. 19 for which data was collected, one will 
see a clean, acceptable weld. This being the last segment of the 
weld, it is suggested that a thinner layer of primer was applied, and 
because of the additional preheat time, the primer was vaporized 
off the workpiece.

We now focus our attention on features of Fig. 19. First, look 
at the bottom photograph that shows the surface of the physical 
weld. One can see a number of holes in the surface of the weld. 
If we look up two graphs to the porosity graph and the blue plot, 
we can see the alignment with the holes in the weld. The number 
of contiguous circles shows the breadth of these holes, and the 
height of the circles represents the diameter of these holes. This 
is clearly shown at about 75 mm with the dual pores with a diam-
eter of 4 mm. We can count 13 surface pores. Turning to the red 
circles that represent the subsurface pores and wormholes, we see 
that there is essentially a continuous string of these pores from 
the beginning of the measure starting at 20 mm out to beyond 
150 mm, the volume being larger in those regions with darker 
radiographic markings.

On the right-hand side of the weld beyond 175 mm, there is no 
surface or subsurface porosity. One can also see that the width 
of the weld is reduced by about 1 mm at this end of the weld by 
looking at the width of the weld face and by noting the leg length 
reduction in the left leg length in this good region of the weld. A 
similar analysis can be conducted on the other sample. All this 
data can be combined with the in-process data, voltage, current, 
travel speed, pose, and contact-tip-to-work distance to create 
an extensive model of the welding process and the resulting weld 
at a 1-mm resolution.

Discussion
Our focus is on the individual 1-mm data sets and the corre-

sponding weld section result. By looking specifically at the input 
data for that slice and the corresponding output result, we can 
identify each as either passing or failing and label them as such. 
Using this microdefect labeling approach, we can build a data set 
that can be used to do machine learning.

To develop a deeper understanding of the relationship between 
weld process parameters, process variables, robot motion, and 
external influences, as well as their relationship to the resulting 
physical weld and weld defects, one must have access to a broad 
range of weld data from a variety of sensors and from postweld 
measurements and analyses that is fully synchronized. The system 
presented here provides that level of data integrity. In addition, a 
methodology for quantifying both surface and subsurface defects 
at the submillimeter level has been presented.

Effects of the Solidification Size of the Weld 
Pool

Since a weld pool takes time to solidify, a detailed data collec-
tion as presented in this paper can help to investigate the effects 
of temporal variations on defect formation. Such comprehensive 
heterogeneous data sets can also provide insights into defect 
diagnosis and prediction. We note here that we have previously 
indicated that data from several time steps are more appropriate 
to include in the input data, since defects such as subsurface and 

surface porosity take several sample periods to develop. A couple 
of ways to do this are to use recurrent neural networks (Ref. 38) 
or convolutional neural networks (Ref. 11).

Predicting Weld Quality at Various Levels of 
Resolution

Although a weld can be judged either good or bad simply by the 
presence or absence of defects globally, having a flexible quan-
titative measure allows one to determine at what level a defect 
predictor model is good at making predictions. The method 
developed here allows one to examine the quality of a weld at a 
fine resolution and to vary the resolution of such analyses. It also 
provides the capability of identifying correspondence between 
in-process variations of all sensed data and the occurrence of 
defects in the weld at a fine resolution, enhancing diagnosis.

Conclusions
This project demonstrates the challenge of aligning data for 

real-world applications of robotic GMAW and presents detailed 
methodologies for addressing those challenges. Major takeaways 
are as follows:
 ■A method for synchronizing and integrating process data and 

output data of various types at a resolution of 1 kHz and 1 mm 
spatially;
 ■A method for aligning surface scan data, weld photographs, 

and radiographs using a homographic transform;
 ■A method using a laser scanner to locate and size surface 

porosity; and
 ■A method for quantifying subsurface porosity using 

radiographic pixel intensity.
These tools will be necessary both for machine learning and for 

corrective control action and will be important for the develop-
ment of the next generation of intelligent robotic welding systems.
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