Association Between the PIK3CA Ile391Met Polymorphism and the Risk of Breast Cancer in an Iranian Population

Document Type : Original Article

Authors

1 Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran

3 Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

10.29252/jabr.01.01.02

Abstract

Introduction: Breast cancer, as a multifactorial disease is the most frequent cancer among women and second most commonly diagnosed cancer in worldwide. Breast cancer is associated with mutations in several genes such as PIK3CA. Phosphoinositide 3 kinase (PI3K) is an important group of lipid kinases that regulate the vital cellular functions such as survival, proliferation, cell growth, motility, differentiation, and intracellular trafficking. The aim of this study is to evaluate the association of rs2230461 of PIK3CA gene with the incidence of breast cancer.
Materials and Methods: A total of 198 healthy donors and 205 breast cancer patients were recruited. Genomic DNA was extracted from peripheral blood leukocytes by Triton X100 technique. Genotyping was performed using RFLP-PCR protocol. Chi-square test, odds ratios (ORs) and 95% CIs were used to determine associations.
Results: There were no significant differences observed regarding the PIK3CA genotype frequencies at codon 391 between patient and control groups (P = 0.17). However, by comparing stage III breast cancer patients and control groups, there was a significantly higher frequency of the GG genotype among stage III cases compared to control (P = 0.01). Although the PIK3CA I391M polymorphism has been located in the C2 domain and doesn’t involve in the binding site, it can affect the protein function.
Conclusions: Since even those mutations that are far from the binding site can affect the protein function and change its dynamic behavior through allosteric impacts and lead to tumorigenesis at last. Since PIK3CA mutations mainly appear late in tumorigenesis, exactly before or coincident with invasion, and may be involved in tumor formation, it is suggested that this polymorphism may be involved in breast cancer invasion.

Keywords


  1. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. doi:10.1038/nature11412
  2. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-386. doi:10.1002/ijc.29210
  3. Chen F, Zhou J, Xue Y, et al. A single nucleotide polymorphism of the TNRC9 gene associated with breast cancer risk in Chinese Han women. Genet Mol Res. 2014;13(1):182-187. doi:10.4238/2014. January.10.9
  4. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74-108.
  5. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225-249. doi:10.3322/ caac.20006
  6. Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB. Cancer incidence in five continents. Volume VIII. IARC Sci Publ. 2002(155):1-781.
  7. Sadjadi A, Nouraie M, Mohagheghi MA, Mousavi-Jarrahi A, Malekezadeh R, Parkin DM. Cancer occurrence in Iran in 2002, an international perspective. Asian Pac J Cancer Prev. 2005;6(3):359- 363.
  8. Mousavi SM, Gouya MM, Ramazani R, Davanlou M, Hajsadeghi N, Seddighi Z. Cancer incidence and mortality in Iran. Ann Oncol. 2009;20(3):556-563. doi:10.1093/annonc/mdn642
  9. Goya M. Iranian Annual Cancer Registration Report 2005/2006. Tehran: Ministry of Health and Medical Education, Health Deputy, Center for Disease Control and Prevention; 2007.
  10. 10. Alizadeh Otaghvar HR, Hoseini M, Mirmalek A, Ahmari H, Arab F, Mohtasham Amiri N. Breast Sarcoma: a review article. Iran J Surg. 2014;22(1):1-11.
  11. 11. Mousavi SM, Montazeri A, Mohagheghi MA, et al. Breast cancer in Iran: an epidemiological review. Breast J. 2007;13(4):383-391. doi:10.1111/j.1524-4741.2007.00446.x
  12. 12. Henderson IC, Canellos GP. Cancer of the breast: the past decade (first of two parts). N Engl J Med. 1980;302(1):17-30. doi:10.1056/ nejm198001033020104
  13. 13. Goya M. Iranian annual cancer registration report. Tehran: Ministry of Health and Medical Education, Health Deputy, Center for Disease Control and Prevention; 2005.
  14. Sharifian A, Pourhoseingholi MA, Emadedin M, et al. Burden of Breast Cancer in Iranian Women is Increasing. Asian Pac J Cancer Prev. 2015;16(12):5049-5052.
  15. Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJ. Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer. 2002;2:37.
  16. Moran MS, Schnitt SJ, Giuliano AE, et al. Society of Surgical Oncology-American Society for Radiation Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in stages I and II invasive breast cancer. Int J Radiat Oncol Biol Phys. 2014;88(3):553-564. doi:10.1016/j. ijrobp.2013.11.012
  17. Han W, Woo JH, Yu JH, et al. Common genetic variants associated with breast cancer in Korean women and differential susceptibility according to intrinsic subtype. Cancer Epidemiol Biomarkers Prev. 2011;20(5):793-798. doi:10.1158/1055-9965.epi-10-1282
  18. Li Y, Song D, Jiang Y, et al. CR1 rs3818361 Polymorphism Contributes to Alzheimer’s Disease Susceptibility in Chinese Population. Mol Neurobiol. 2016;53(6):4054-4059. doi:10.1007/ s12035-015-9343-7
  19. Brentnall AR, Evans DG, Cuzick J. Distribution of breast cancer risk from SNPs and classical risk factors in women of routine screening age in the UK. Br J Cancer. 2014;110(3):827-828. doi:10.1038/ bjc.2013.747
  20. Cuzick J, Brentnall AR, Segal C, et al. Impact of a Panel of 88 Single Nucleotide Polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials. J Clin Oncol. 2017;35(7):743-750. doi:10.1200/ jco.2016.69.8944
  21. Kumar DT, Doss CG. Investigating the Inhibitory Effect of Wortmannin in the Hotspot Mutation at Codon 1047 of PIK3CA Kinase Domain: A Molecular Docking and Molecular Dynamics Approach. Adv Protein Chem Struct Biol. 2016;102:267-297. doi:10.1016/bs.apcsb.2015.09.008
  22. Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627- 644. doi:10.1038/nrd2926
  23. Mangone FR, Bobrovnitchaia IG, Salaorni S, Manuli E, Nagai MA. PIK3CA exon 20 mutations are associated with poor prognosis in breast cancer patients. Clinics (Sao Paulo). 2012;67(11):1285- 1290.
  24. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655-1657. doi:10.1126/science.296.5573.1655
  25. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. doi:10.1126/science.1096502
  26. Cohen Y, Goldenberg-Cohen N, Shalmon B, et al. Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma. Oral Oncol. 2011;47(10):946-950. doi:10.1016/j. oraloncology.2011.07.013
  27. Lin DC, Hao JJ, Nagata Y, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46(5):467-473. doi:10.1038/ng.2935
  28. Pang B, Sun SP, Gao L, et al. A single nucleotide polymorphism in PIK3CA gene is inversely associated with P53 protein expression in breast cancer. Med Oncol. 2014;31(7):30. doi:10.1007/s12032- 014-0030-8
  29. Pu X, Hildebrandt MA, Lu C, et al. PI3K/PTEN/AKT/mTOR pathway genetic variation predicts toxicity and distant progression in lung cancer patients receiving platinum-based chemotherapy. Lung Cancer. 2011;71(1):82-88. doi:10.1016/j.lungcan.2010.04.008
  30. Rivera M, Ricarte-Filho J, Patel S, et al. Encapsulated thyroid tumors of follicular cell origin with high grade features (high mitotic rate/ tumor necrosis): a clinicopathologic and molecular study. Hum Pathol. 2010;41(2):172-180. doi:10.1016/j.humpath.2009.08.011
  31. Slattery ML, Herrick JS, Lundgreen A, Fitzpatrick FA, Curtin K, Wolff RK. Genetic variation in a metabolic signaling pathway and colon and rectal cancer risk: mTOR, PTEN, STK11, RPKAA1, PRKAG2, TSC1, TSC2, PI3K and Akt1. Carcinogenesis. 2010;31(9):1604- 1611. doi:10.1093/carcin/bgq142
  32. Wan X, Li X, Yang J, et al. Genetic association between PIK3CA gene and oral squamous cell carcinoma: a case control study conducted in Chongqing, China. Int J Clin Exp Pathol. 2015;8(10):13360-13366.
  33. Wang LE, Ma H, Hale KS, et al. Roles of genetic variants in the PI3K and RAS/RAF pathways in susceptibility to endometrial cancer and clinical outcomes. J Cancer Res Clin Oncol. 2012;138(3):377- 385. doi:10.1007/s00432-011-1103-0
  34. Firoozinia M, Zareian Jahromi M, Moghadamtousi SZ, Nikzad S, Abdul Kadir H. PIK3CA gene amplification and PI3K p110alpha protein expression in breast carcinoma. Int J Med Sci. 2014;11(6):620-625. doi:10.7150/ijms.8251
  35. Kodaki T, Woscholski R, Hallberg B, Rodriguez-Viciana P, Downward J, Parker PJ. The activation of phosphatidylinositol 3-kinase by Ras. Curr Biol. 1994;4(9):798-806.
  36. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM. Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol. 1998;18(3):1379-1387.
  37. Wu H, Yan Y, Backer JM. Regulation of class IA PI3Ks. Portland Press Limited; 2007.
  38. Cooper A, Dryden DTF. Allostery without conformational change. Eur Biophys J. 1984;11(2):103-109. doi:10.1007/bf00276625
  39. Motlagh HN, Wrabl JO, Li J, Hilser VJ. The ensemble nature of allostery. Nature. 2014;508(7496):331-339. doi:10.1038/ nature13001
  40. Nussinov R, Ma B. Protein dynamics and conformational selection in bidirectional signal transduction. BMC Biol. 2012;10:2. doi:10.1186/1741-7007-10-2
  41. Tsai CJ, Del Sol A, Nussinov R. Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol Biosyst. 2009;5(3):207-216. doi:10.1039/b819720b
  42. Nylander S, Kull B, Bjorkman JA, et al. Human target validation of phosphoinositide 3-kinase (PI3K)beta: effects on platelets and insulin sensitivity, using AZD6482 a novel PI3Kbeta inhibitor. J Thromb Haemost. 2012;10(10):2127-2136. doi:10.1111/j.1538- 7836.2012.04898.x
  43. Karakas B, Colak D, Kaya N, et al. Prevalence of PIK3CA mutations and the SNP rs17849079 in Arab breast cancer patients. Cancer Biol Ther. 2013;14(10):888-896. doi:10.4161/cbt.25945
  44. Mir A, Sadegh MH, Ahmadinia Z, Kaboli PJ. PIK3CA rs7640662 (C/G) single nucleotide polymorphism lacks association with breast cancer cases in Persians. Interv Med Appl Sci. 2015;7(1):3- 8. doi:10.1556/imas.7.2015.1.1