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Abstract. In this paper, we established the boundedness for a large class of multi-sublinear opera-
tors Tm generated by multilinear Calderón-Zygmund operators on product generalized Morrey spaces
Mp1,ϕ1(Rn) × . . . × Mpm,ϕm(Rn). We find the sufficient conditions on (ϕ1, . . . , ϕm, ϕ) which en-
sures the boundedness of the operators Tm fromMp1,ϕ1(Rn) × . . . ×Mpm,ϕm(Rn) toMp,ϕ(Rn) for
1/p = 1/p1 + . . .+ 1/pm. The multi-sublinear operators under consideration contain integral operators
of harmonic analysis such as multi-sublinear maximal operator Mm, multilinear Calderón-Zygmund
operators Tm, etc.
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generalized Morrey space.
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1 Introduction

Multilinear Calderón-Zygmund theory is a natural generalization of the linear case. The
initial work on the class of multilinear Calderón-Zygmund operators was done by Coifman
and Meyer in [2] and was later systematically studied by Grafakos and Torres in [9,10].

The classical Morrey spaces, introduced by Morrey [23] in 1938, have been studied
intensively by various authors and together with Lebesgue spaces play an important role
in the theory of partial differential equations. Although such spaces allow to describe local
properties of functions better than Lebesgue spaces, they have some unpleasant issues. It is
well known that Morrey spaces are non separable and that the usual classes of nice functions
are not dense in such spaces. Moreover, various Morrey spaces are defined in the process
of study. Guliyev, Mizuhara and Nakai [11,21,24] introduced generalized Morrey spaces
Mp,ϕ(Rn) (see, also [12,13,17,26]). In [13] is defined the generalized Morrey spacesMp,ϕ

with normalized norm

‖f‖Mp,ϕ ≡ sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−1/p ‖f‖Lp(B(x,r)),
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where the functionϕ is a positive measurable function on Rn×(0,∞). Here and everywhere
in the sequel B(x, r) is the ball in Rn of radius r centered at x and |B(x, r)| = vnr

n is
its Lebesgue measure, where vn is the volume of the unit ball in Rn. In [11] Guliyev also
studied the boundedness of the classical operators in these spacesMp,ϕ, see also [3–8,18,
19,25].

For x ∈ Rn and r > 0, we denote by B(x, r) the open ball centered at x of radius
r, and by

{
B(x, r) denote its complement. Let |B(x, r)| be the Lebesgue measure of the

ball B(x, r). We denote by
−→
f the m-tuple (f1, f2, . . . , fm), −→y = (y1, . . . , yn) and d−→y =

dy1 · · · dyn.
Let
−→
f ∈ Llocp1 (R

n) × . . . × Llocpm(R
n). The multi-sublinear maximal operator Mm is

defined by

Mm(
−→
f )(x) = sup

r>0

m∏
i=1

1

|B(x, r)|

∫
B(x,r)

|fi(yi)|dyi.

In [10] Grafakos and Torres studied the multilinear Calderón-Zygmund operator which
can be written for x /∈ ∩mj=1suppfj as

Km(
−→
f )(x) =

∫
(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1dy2 . . . dym,

where K(x, y1, . . . , ym) is the kernel function defined of the diagonal x = y1 = . . . ym =

in (Rn)m+1 satisfying

|K(y0, y1, . . . , ym)| ≤ c1
( m∑
k,l=0

|yk − yl|
)−mn

,

and whenever 2|yj − y′j | ≤ 1
2 max
0≤k≤m

|yj − yk|,

|K(y0, . . . , yj , . . . , ym)−K(y0, . . . , y
′
j , . . . , ym)| ≤

c1|yj − y′j |ε( m∑
k,l=0

|yk − yl|
)mn+ε ,

for some ε > 0 and all 0 ≤ j ≤ m. Grafakos and Torres [10] proved that the operator
Km(
−→
f ) is bounded from Lp1(Rn)× . . .× Lpm(Rn) to Lp(Rn) for pi > 1(i = 1, . . . ,m)

and 1/p = 1/p1 + . . .+ 1/pm, and bounded from L1(Rn)× . . .× L1(Rn) to L 1
m
,∞(Rn).

It is well known that multi-sublinear maximal operator and multilinear Calderón-Zygmund
operators play an important role in harmonic analysis (see [1,10,22]).

Suppose that Tm represents a multilinear or a multi-sublinear operator, which satisfies
that for any

−→
f ∈ L1(Rn)× . . .× L1(Rn) with compact support and x /∈ ∩mj=1suppfj

|Tm(
−→
f )(x)| ≤ c0

∫
(Rn)m

∣∣f1(y1) . . . fm(ym)∣∣
|(x− y1, . . . , x− ym)|mn

dy1dy2 . . . dym, (1.1)

where c0 is independent of
−→
f and x.

The condition (1.1) is satisfied by many interesting operators in harmonic analysis, such
as the multilinear Calderón–Zygmund operators, multi-sublinear maximal operator, and so
on (see [10,20] for details).
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In this work, we prove the boundedness of the multi-sublinear operator Tm satisfies the
condition (1.1) generated by multilinear Calderón-Zygmund operator from product gen-
eralized Morrey space Mp1,ϕ1 × . . . ×Mpm,ϕm to Mp,ϕ, if 1 < p1, . . . , pm < ∞ and
1/p = 1/p1 + · · ·+ 1/pm, and from the spaceMp1,ϕ1 × . . .×Mpm,ϕm to the weak space
WM1,ϕ, if 1 ≤ p1, . . . , pm <∞, 1/p = 1/p1 + · · ·+ 1/pm and at least one pi equals one
(Theorem 2.3). Finally, as applications we apply this result to several particular operators
such as the multi-sublinear maximal operator and multilinear Calderón-Zygmund operator.

By A . B we mean that A ≤ CB with some positive constant C independent of
appropriate quantities. If A . B and B . A, we write A ≈ B and say that A and B are
equivalent.

2 Main Results

In this section, we will discuss the boundedness properties of multi-sublinear operators
Tm generated by multilinear Calderón-Zygmund operators on product generalized Morrey
spacesMp1,ϕ1(Rn)× . . .×Mpm,ϕm(Rn).

We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 2.1 Let ϕ(x, r) be a positive measurable function on Rn × (0,∞) and 1 ≤
p < ∞. We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the space of all
functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖Lp(B(x,r)).

Also by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of all func-
tions f ∈WLloc

p (Rn) for which

‖f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 |B(x, r)|−
1
p ‖f‖WLp(B(x,r)) <∞.

Lemma 2.1 [4] Let ϕ(x, r) be a positive measurable function on Rn × (0,∞).

(i) If

sup
t<r<∞

r
−n

p

ϕ(x, r)
=∞ for some t > 0 and for all x ∈ Rn, (2.1)

then Mp,ϕ(Rn) = Θ.
(ii) If

sup
0<r<τ

ϕ(x, r)−1 =∞ for some τ > 0 and for all x ∈ Rn, (2.2)

then Mp,ϕ(Rn) = Θ.

Remark 2.1 We denote by Ωp the sets of all positive measurable functions ϕ on Rn ×
(0,∞) such that for all t > 0,

sup
x∈Rn

∥∥∥ r
−n

p

ϕ(x, r)

∥∥∥
L∞(t,∞)

<∞, and sup
x∈Rn

∥∥∥ϕ(x, r)−1∥∥∥
L∞(0,t)

<∞,

respectively. In what follows, keeping in mind Lemma 2.1, we always assume that ϕ ∈ Ωp.
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We will use the following statements on the boundedness of the weighted Hardy operator

Hwg(r) :=

∫ ∞
r

g(t)w(t)dt, 0 < t <∞,

where w is a fixed function non-negative and measurable on (0,∞).
The following theorem was proved in [14] (see also [16]).

Theorem 2.1 [14] Let v1, v2 and w be positive almost everywhere and measurable func-
tions on (0,∞). The inequality

ess sup
r>0

v2(r)Hwg(r) ≤ C ess sup
r>0

v1(r)g(r) (2.3)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
r>0

v2(r)

∫ ∞
r

w(t)dt

supt<s<∞ v1(s)
<∞. (2.4)

Moreover, the value C = B is the best constant for (2.3).

Remark 2.2 In (2.3) – (2.4) it is assumed that 0 · ∞ = 0.

In the following lemma we get Guliyev local estimate (see, for example, [11–13] in the
case m = 1 and [15] in the case m > 1) for the operator Tm.

Theorem 2.2 Let 1 ≤ p1, . . . , pm < ∞ and 1/p = 1/p1 + · · · + 1/pm. Let Tm be a
multi-sublinear operator which satisfies the condition (1.1) bounded from Lp1(Rn)× . . .×
Lpm(Rn) to Lp(Rn) for pi > 1, i = 1, . . . ,m, and bounded from Lp1(Rn)× . . .×Lpm(Rn)
to WLp(Rn) for pi ≥ 1, i = 1, . . . ,m.

Then, for 1 < p1, . . . , pm <∞ the inequality

‖Tm(
−→
f )‖Lp(B(x0,r)) . r

n
p

m∏
i=1

∫ ∞
2r

t
− n

pi
−1‖fi‖Lpi (B(x0,t))dt (2.5)

holds for any ball B(x0, r) and for all
−→
f ∈ Llocp1 (R

n)× . . .× Llocpm(R
n).

Moreover, if at least one pi equals one, the inequality

‖Tm(
−→
f )‖WLp(B(x0,r)) . r

n
p

m∏
i=1

∫ ∞
2r

t
− n

pi
−1‖fi‖Lpi (B(x0,t))dt (2.6)

holds for any ball B(x0, r) and for all
−→
f ∈ Llocp1 (R

n)× . . .× Llocpm(R
n).

Proof. Let 1 < p1, . . . , pm < ∞ and 1/p = 1/p1 + · · · + 1/pm. For arbitrary x0 ∈ Rn,
set B = B(x0, r) for the ball centered at x0 and of radius r, 2B = B(x0, 2r). We represent
−→
f = (f1, . . . , fm) as

fj = f0j + f∞j , f0j = fjχ2B, f∞j = fjχ {(2B)
, j = 1, . . . ,m. (2.7)

Then we split Tm(
−→
f ) as follows

∣∣∣Tm(−→f )(x)
∣∣∣ ≤ c0 ∣∣Tm(f01 , . . . , f0m)(x)∣∣+ ∣∣∣ ′∑

β1,...,βm

Tm(f
β1
1 , . . . , fβmm )(x)

∣∣∣,
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where β1, . . . , βm ∈ {0,∞} and each term of
∑′

contains at least βi 6= 0. Then,

‖Tm(
−→
f )‖Lp(B(x,r)) ≤ ‖Tm(f01 , . . . , f0m)‖Lp(B(x,r))

+ ‖
′∑

β1,...,βm

Tm(f
β1
1 , . . . , fβmm )‖Lp(B(x,r)) ≤ I + II.

For I , by the boundedness of Tm from product Lp1(Rn) × . . . × Lpm(Rn) to Lp(Rn)
with 1/p = 1/p1 + . . .+ 1/pm for each pi > 1(i = 1, . . . ,m), we have,

‖Tm(
−→
f0)‖Lp(B(x,r)) ≤ ‖Tm(

−→
f0)‖Lp(Rn)

.
m∏
i=1

‖f0i ‖Lpi (Rn) .
m∏
i=1

‖fi‖Lpi (B(x,2r)).

Taking into account that

‖fi‖Lpi (B(x,2r)) . r
n
pi

∫ ∞
2r

t
− n

pi
−1‖fi‖Lpi (B(x,t))dt, i = 1, . . . ,m

we get

‖Tm(
−→
f0)‖Lp(B(x,r)) . r

n
p

m∏
i=1

∫ ∞
2r

t
− n

pi
−1‖fi‖Lpi (B(x,t))dt. (2.8)

For II , first we consider the case β1 = · · · = βm =∞.
When |x− yi| ≤ r, |z − yi| ≥ 2r, we have 1

2 |z − yi| ≤ |x− yi| ≤
3
2 |z − yi|, and so by

the condition (1.1) we have

|Tm(
−→
f∞)(z)| .

∫(
{B(x,2r)

)m |f1(y1) · · · fm(ym)|
|(x− y1, . . . , x− ym)|mn

d−→y

.
m∏
i=1

∫
{B(x,2r)

|fi(yi)|
|x− yi|n

dyi

and

‖Tm(
−→
f∞)‖Lp(B(x,r)) ≤

m∏
i=1

∫
{B(x,2r)

|fi(yi)|
|x− yi|n

dyi ‖χB(x,r)‖Lp(Rn)

. r
n
p

m∏
i=1

∫
{B(x,2r)

|fi(yi)|
|x− yi|n

dyi.

By Fubini’s theorem we have∫
{B(x,2r)

|fi(yi)|
|x− yi|n

dyi ≈
∫

{B(x,2r)
|fi(yi)|

∫ ∞
|x0−yi|

dt

tn+1
dyi

≈
∫ ∞
2r

∫
2r≤|x0−yi|<t

|fi(yi)|dyi
dt

tn+1

.
∫ ∞
2r

∫
B(x0,t)

|fi(yi)|dyi
dt

tn+1
.
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Applying Hölder’s inequality, we get∫
{B(x,2r)

|fi(yi)|
|x− yi|n

dyi .
∫ ∞
2r

t
− n

pi
−1‖fi‖Lpi (B(x,t))dt. (2.9)

Moreover, for all pi ∈ [1,∞), i = 1, . . . ,m the inequality

‖Tm(
−→
f∞)‖Lp(B(x,r)) . r

n
p

m∏
i=1

∫ ∞
2r

t
− n

pi
−1‖fi‖Lpi (B(x,t))dt (2.10)

is valid.
Next we consider the case that some αi = 0 and other αj = ∞. To this end we may

assume that α1 = α2 =∞ and α3 = · · · = αm = 0. Recall the condition (1.1) and the fact
that |x− yi| ≈ |z − yi| for z ∈ B(x, r) and yi ∈

{
B(x, 2r), we have that

T (f∞1 , f∞2 , f03 , . . . , f
0
m)(z)

.
∫

{B(x,2r)× {B(x,2r)

|f1(y1)||f2(y2)|
(|x− y1|+ |x− y2|)mn

dy1dy2

m∏
i=3

∫
B(x,2r)

|fi(yi)|dyi

.
∫

{B(x,2r)

|f1(y1)|
|x− y1|n

dy1

∫
{B(x,2r)

|f2(y2)|
|x− y2|n

dy2

m∏
i=3

∫
B(x,2r)

|fi(yi)|dyi.

By the inequality (2.9) and use the Hölder’s inequality for integrals, we get

‖T (f∞1 , f∞2 , f03 , . . . , f
0
m)‖Lp(B(x,r))

. r
n
p

∫
{B(x,2r)

|f1(y1)|
|x− y1|n

dy1

∫
{B(x,2r)

|f2(y2)|
|x− y2|n

dy2

m∏
i=3

∫
B(x,2r)

|fi(yi)|dyi

≤ r
n
p

m∏
i=3

∫ ∞
r

t
− n

pi
−1‖fi‖Lpi (B(x,t))dt.

For the proof of the inequality (2.6), by a similar argument as in the proof of (2.5) and
pay attention to the fact that

−→
f → Tm(

−→
f ) is bounded from Lp1(Rn) × · · · × Lpm(Rn) to

WLp(Rn), we can similarly prove (2.6) and we omit the details here.

Now we give the boundedness of multi-sublinear operators generated by multilinear Calderón-
Zygmund operators on product generalized Morrey space.

Theorem 2.3 Let 1 ≤ p1, . . . , pm <∞with 1/p = 1/p1+. . .+1/pm and (ϕ1, . . . , ϕm, ϕ) ∈
Ωp1 × . . .×Ωp1 ×Ωp satisfies the condition

m∏
i=1

∫ ∞
r

ess inf
t<s<∞

ϕi(x, s)s
n
pi

t
n
pi

+1
dt . ϕ(x, r). (2.11)

Let also Tm be a multi-sublinear operator which satisfies the condition (1.1) and bounded
from Lp1(Rn) × . . . × Lpm(Rn) to Lp(Rn) for pi > 1, i = 1, . . . ,m, and bounded from
Lp1(Rn)× . . .×Lpm(Rn) to WLp(Rn) for pi ≥ 1, i = 1, . . . ,m. Then the operator Tm is
bounded from product spaceMp1,ϕ1(Rn)× . . .×Mpm,ϕm(Rn) toMp,ϕ(Rn) for pi > 1,
i = 1, . . . ,m, and from product spaceMp1,ϕ1(Rn)× . . .×Mpm,ϕm(Rn) to WMp,ϕ(Rn)
for at least one pi equals one.
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Proof. Let 1 < p1, . . . , pm < ∞ and
−→
f ∈ Mp1,ϕ1(Rn) × . . . ×Mpm,ϕm(Rn). By Theo-

rems 2.1 and 2.2 we have

‖Tα,m(
−→
f )‖Mp,ϕ . sup

x∈Rn, r>0
ϕ(x, r)−1

m∏
i=1

∫ ∞
r

t
− n

pi
−1‖fi‖Lpi (B(x,t))dt

.
m∏
i=1

sup
x∈Rn,r>0

ϕi(x, r)
−1 r ‖fi‖Lpi (B(x,r)) =

m∏
i=1

‖fi‖Mpi,ϕi
.

When pi = 1, i = 1, . . . ,m, the proof is similar and we omit the details here.

Corollary 2.1 [15] Let 1 ≤ p1, . . . , pm < ∞ with 1/p = 1/p1 + . . . + 1/pm. Let also
(ϕ1, . . . , ϕm, ϕ) ∈ Ωp1 × . . . × Ωp1 × Ωp satisfies the condition (2.11). Then the oper-
ators Mm and Km are bounded from product space Mp1,ϕ1(Rn) × . . . ×Mpm,ϕm(Rn)
to Mp,ϕ(Rn) for pi > 1, i = 1, . . . ,m and from product space Mp1,ϕ1(Rn) × . . . ×
Mpm,ϕm(Rn) to WMp,ϕ(Rn) for at least one pi equals one.
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