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Abstract 

The methods are given for an adaptive engine control 

system creation in this paper for tests and diagnostics 

based on a neuro-fuzzy system, which made it possible 

to simplify the elements of an automated system 

structure for the testing and the diagnosing of internal 

combustion engines. The system created provides a 

more accurate method of controlling certain parameters 

of the engine, which improved the quality of control 

when it was diagnosed and allowed to reduce the 

volume of the knowledge base. 

 

In order to control the engine during its testing and 

diagnostics it is proposed to use the methods of neuro-

fuzzy inference, widely applied in the development of 

intelligent systems. In order to describe an engine 

management, expert knowledge is used instead of 

mathematical models. 

 

The control of internal combustion engines (ICE) in 

ASID based on a neural-fuzzy system is founded on a 

knowledge base containing a number of fuzzy rules 

automatically generated by a neural network. The 

filling in of this knowledge base is also possible by 

direct measurement method, but it is more appropriate 

to fill in the knowledge base with a neural network. 

The use of a neural-fuzzy system in ASID allowed the 

introduction of the initial information - the knowledge 

base of fuzzy control rules into the control system. The 

proximity of the form of control rule forms to natural 

language makes it possible to work with the knowledge 

base for test technologists. 

 

Keywords: Mathematical Model, Internal Combustion 

Engine, Neuro-Fuzzy System, Automation. 

 

Introduction 

Fuzzy logic systems and neural networks are the most 

important application of intelligent systems. The 

functioning of such systems differs from the 

functioning of classical systems [1]. 

The main goal of the neuro-fuzzy system is to control 

the external impact, in which an object is controlled by 

fuzzy rules [2]. 

The control system of an internal combustion engine 

based on the neuro-fuzzy system can be represented as 

a set of modules (Fig. 1). 

 

 
Fig. 1. The Structure of the Neural-Fuzzy Engine Diagnostics System  

 

The ASID of internal combustion engines includes the 

following modules: "Program's History Module", 

"Learning Module", "Knowledge Base", "Testing 

program's creation module", "Control Unit", 
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"Execution Units Module", "Testing Programs 

Database", "Engine". 

A technologist creates a knowledge base for fuzzy 

control rules, on the basis of which a control program 

is created using ASID ICE [3]. 

A user creates the sequences to change the parameters 

of interest in the "Testing program's creation Module" 

that are recorded from time to time in the "Testing 

Programs Database" unit. In this multi-level database 

the input images are transformed sequentially into 

control actions through a fuzzy output system, which is 

located in the "Testing program's creation Module". In 

order to obtain control values, the fuzzy system applies 

fuzzy control rules and linguistic variables that are in 

the "Knowledge Base" unit. Eventually, the sequence 

of control actions is created, which is stored in the 

Testing Programs Database. Based on the received 

data, the "Control Unit" controls the ACID ICE 

directly, for example, changes the amount of fuel 

supplied to an engine or external load. During the tests 

with the "Execution Units Module" information is 

generated about the current status of a control object, 

for example, about the crankshaft speed, torque, fuel 

consumption, etc. The listed data is stored in the 

"Program's History Module". The incoming data are 

also directly transferred to the "Control Unit" from the 

sensors, which is necessary to prevent emergencies. 

The ASDIC ICE stops its operation in the event of an 

engine speed sudden increase, oil temperature increase 

or in other cases. 

In "Learning Module" feedback is received from the 

"Program's History Module". This feedback is 

necessary to implement the principle of adaptive 

management, as well as to fill in the knowledge base in 

which the management rules are located. These rules 

can also be created or adjusted on the basis of direct 

measurement method by the analysis of the 

information coming from the "Program's History 

Module" in the "Learning Module". 

 

Methods 

The process of engine test procedure development 

based on the developed structure using a fuzzy system 

is represented by the following sequence of steps 

shown on Fig. 2. 

 
Fig. 2. Structure of the Engine Test Process 

 

The upper level is the test procedure, namely the 

document regulating the conduct of any type of engine 

testing. 

It reflects the main points of tests - a purpose and a 

designation, the volume, the state of a test object 

choice, the test equipment, the test conditions and 

methodology, the methods of result evaluation, the 

requirements for technical characteristics and fire 

safety. The test procedure is developed by a 

technologist taking into account the engine parameters 

of interest. When it is used, a technologist must specify 

the parameters of the engine that would be desirable to 

obtain at the output, and ASID will select the optimal 

input control actions for the implementation of these 

modes. 

At another stage this testing procedure is presented in 

the form of images - graphic images. An image is a 

sequence of varying modes, each of which can be 

represented as a segment. The time of an engine 

operating mode is equal to the projection on the 

abscissa axis. The change of the controlled parameter 

during this time interval corresponds to the projection 
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on the ordinate axis. 

An example of image changes in the engine operation 

by the engine speed is shown on Fig. 3. When an 

image is created, interactive and cognitive graphics are 

used, which allows a technologist to adjust the engine 

operating modes independently, without ASID 

programming. One of the advantages of cognitive 

graphics is its simplicity, so a technologist imagines the 

tests being conducted better and sets the control actions 

graphically at the design stage to exclude emergency 

modes. 

 

 
Fig. 3. The Graph of the Engine Operating Conditions According to the Crankshaft Speed 

 

Results and Discussion 

One of the main components of the intelligent ASID 

ICE system is the knowledge base. The knowledge 

base ASID ICE is represented by a set of facts and 

output rules, allowing building a logical conclusion and 

conducting the processing of incoming information [4]. 

 

The ASID knowledge base consists of three levels (Fig. 

4). 

 

 
Fig. 4. Knowledge Base   

Linguistic variables are located at the first level. These 

variables are set by a technologist at the testing stage 

for a particular engine model. They should include the 

parameters by which you can manage and install tests. 

Linguistic marks are formed by test technologists or by 

direct measurements. This level defines the basic range 

and the number of linguistic variables on it, as well as 

the type of belonging functions. The number of 

linguistic variables determines the accuracy of the 

received control action. The improvement of control 

depends on the number of markings increase, but at the 

same time the time of filling in the knowledge base 

increases. The syntactic and semantic rules of linguistic 

variables are obtained at this level [5]. 

 

The second level of the knowledge base consists of 

fuzzy control rules used to convert the specified 

parameters into a control action. These rules are made 

up of linguistic marks, defined at the previous level. 

Fuzzy rules can be formed by test technologists, by 

direct measurement and by a neural network use with 

self-learning. During the use of a neural network with 
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self-learning, an automatic process of fuzzy rules 

knowledge base development occurs. This level also 

contains semantic rules that set the real engine test 

modes. For example, it seems impossible to generate 

maximum power and a torque at very low engine 

speed. The specified fuzzy control rules also allow the 

description of emergency modes. 

The third level includes the priority vectors set for 

characteristic rating. The vectors of priorities consist of 

the parameters that must be set by [6]. On their basis, 

you can establish a certain direction of testing. For 

example, the tests for environmental friendliness, 

power or an engine operation economy. This level is 

set by the method of expert assessments. 

During the diagnostics of engine faults with ASID the 

feedback is used [7]. Feedback is used both to correct 

the results and develop a control vector, and for a 

knowledge base development. 

When the knowledge base is filled in with dynamic 

engine test modes, the control rule will have the 

following form: 

 

IF ωi AND Rj THEN hi; 

 

where ωi – engine speed (ω1, ω2, ω3,…, ωn); 

Rj – engine operation mode R-r; …R-1; R0 ; 

R1…; Rr ; 

hi – the position of HPFP rail (for a diesel 

engine) h1, h2, … hn. 

Based on such fuzzy control rules, it is possible to form 

a knowledge base for an engine operation in stationary 

modes [8]. In this case, the Rj mode will have a 

constant value of R0, i.e. an engine will be operated in 

the mode in which neither speed reduction or increase 

occurs. The basis of stationary modes will be the 

following one: 

 

IF ωi AND R0 THEN hk
х, 

 

where ωi – engine speed (ω1, ω2, ω3,…, ωn), 

R0 – stationary mode of an engine operation, 

hk – HPFP regulator position (h1, h2, … hl). 

The operating mode Rj arises during the use of direct 

measurement method. Let's suppose that the control 

rule is given: 

 

IF ωk AND R1 THEN hx
х, 

 

where ωk, R1 are fixed fuzzy labels of the levels ωi and 

Rj, 

hx the unknown value of hk level. 

In order to fill this rule, the following nearest 

rule is sought: 

 

IF ωk AND R0 THEN hs, 

 

where ωk, R1, hs are fixed fuzzy marks for the levels ωi, 

Rj and hk. 

Based on the method of direct measurements, 

two new control rules are created: 

 

(1) IF ωk AND R1 THEN hs; 

(2) IF ωk AND R1 THEN hs+1. 

 

The control value of the rule (1) is the same as the 

closest precedent, and for rule (2) the nearest fuzzy 

mark is placed in the direction of Rj mode change (if Rj 

mode of the new rule is better than the previous one, 

then the reference value is shifted towards the nearest 

fuzzy mark value, otherwise it decreases) [9]. 

The result of the first rule work is the values that 

completely coincide with the precedent. Next, the 

result of the second rule work is checked in the self-

study mode. If the first rule turns out to be more 

accurate, it is left in the knowledge base and the 

development of the knowledge base is completed. Then 

rule (2) is replaced by rule (1). Rule (2) is created again 

based on the basis of the following linguistic variable: 

 

(1) IF ωk AND 

R1 THEN hs+1; 

(2) IF ωk AND 

R1 THEN hs+2. 

 

These two rules are checked for validity. If rule (1) is 

more accurate, then it is left in the knowledge base, 

otherwise the process similar to the previous one, takes 

place [10]. 

If after the selection, the most optimal rule does not 

satisfy the required accuracy, it is necessary to enter the 

mark of the intermediate fuzzy control parameter based 

on the intersection operation. If the base value can be 

associated with an equal degree of probability by two 

adjacent marks ai and ai+1, then a new linguistic label 

ai,i + 1 is created at that point. 

Graphically, the intersection of linguistic variables is 

presented on Fig. 5. 
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Fig. 5. Intersection of Linguistic Parameters ai , ai+1 

 

The introduction of a new linguistic variable will create 

a new rule of management: 

 

IF ωk AND R1 THEN hs+1, s+2. 

If this rule satisfies the required accuracy, then it is 

stored in the knowledge base, otherwise another fuzzy 

mark is formed in the range between fuzzy marks with 

the smallest error. 

The number of fuzzy marks is determined by the 

capabilities of the neural-fuzzy system, since the 

increase of marks can affect the calculations and the 

engine control in real time. 

 

Conclusions 

The application of the graphical representation of 

control actions is convenient for a technologist, which 

is better than the setting of control actions in the form 

of numerical data. The next step is the conversion of 

images into a summary table of parameters. To do this, 

the entire testing time is divided into time intervals tmin, 

on which an engine will operate. The choice of this 

value should be as small as possible, as this leads to 

improved control accuracy and the elimination of 

emergencies, but as the intervals decrease, 

computational resources are required. Based on these 

values, the number of points is set in which control will 

be conducted during testing: 

 

S= tis / tmin, (1) 

where S – the number of operation key points; 

tis – total operating time in a given mode; 

tmin – the time between two modes of operation. 

During the next step, the values of the measured 

parameters (P1i, P2i, P3i, ..., Pmi) are determined for 

each time interval, where Pi are parameter values at a 

certain time, which are obtained from the 

corresponding m graphic images. This data is stored in 

the parameter table (Table 1). 

 

Table 1 Graphical Parameters of Engine 

№ Running Time  Graph 1  Graph 2 Graph 3 … Graph k 

1. t=0 P11 P21 P31 … Pk1 

2. t=tmin P12 P22 P32 … Pk2 

3. t=t+tmin P13 P23 P33 … Pk3 

… … … … … … … 

S. tis P1S P2S P3S … PkS 

 

Fuzzification is performed during the next step i.e. the 

transformation of even values of input variables Pi into 

fuzzy Mi using the linguistic variable. Such a 

transformation is in fact a kind of standardization 

necessary for the transfer of data into linguistic tags. 

Linguistic tags for the transfer of a clear meaning into 

fuzzy ones are stored in the knowledge base ASID. The 

result of the work at this stage is the generated 

parameter table, where fuzzy marks are placed instead 

of clear values. In general, the result of this stage is 

presented in Table 2. 

 

Table 2. Fuzzy Input Parameters 

№ Running time Fuzzy set 1 Fuzzy set 2 Fuzzy set 3 … Fuzzy set k 

1. t=0 M11 M21 M31 … Mk1 

2. t=tmin M12 M22 M32 … Mk2 

3. t=t+ tmin M13 M23 M33 … Mk3 

 … … … … … … 

S. tis M1S M2S M3S … MkS 
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The next step is the development of a fuzzy result in an 

output frame. To do this, fuzzy rules are applied from 

the "Knowledge Base" module. Then fuzzy input 

parameters of the engine are formed. With these rules, 

fuzzy output marks are generated (Table 3). 

 

Table 3. Fuzzy Output Parameters 

№ Running time Fuzzy set 1 Fuzzy set 2 Fuzzy set 3 … Fuzzy set k 

1. t=0 N11 N21 N31 … Nk1 

2. t=tmin N12 N22 N32 … Nk2 

3. t=t+ tmin N13 N23 N33 … Nk3 

 … … … … … … 

S. tis N1S N2S N3S … NkS 

 

The next stage is dephasing. Dephasing means the 

procedure for fuzzy control action conversion into 

clear ones. Using them you can perform an engine 

diagnostics and testing. The result of this step is shown 

in Table 4. 

Table 4 – Control Actions 

Item №  Running time Control Action 1 Control Action 2 Control Action 3 … Control Action k 

1. t=0 y11 y21 y31 … yk1 

2. t=tmin y12 y22 y32 … yk2 

3. t=t+ tmin y13 y23 y33 … yk3 

 … … … … … … 

S. tis y1s y2s y3s … yks 

 

The stages of fuzzification, derivation and 

defuzzification are carried out using the standard 

mathematical apparatus of fuzzy set theory. 

The final stage is the testing of the engine based on the 

received clear control actions. 

 

Summary 

Thus, the application of a neuro-fuzzy system will 

shorten the time of the knowledge base development 

and will increase the adequacy of an engine control at 

different modes with the increase in the number of 

carried out engine tests. The use of the direct 

measurement method will also make it possible to 

apply the already available knowledge base of the 

tested engine to another engine of the same series. 

The result of the work carried out is the software 

development for ASID engines. 
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